新闻中心

EEPW首页 > EDA/PCB > 设计应用 > 基于FPGA的PCM30/32路系统信号同步数字复接设计

基于FPGA的PCM30/32路系统信号同步数字复接设计

作者: 时间:2011-08-05 来源:网络 收藏

3.3 分解端电路设计原理
在分解端,8 MHz高速串行信号e首先经过同步时钟提取模块,根据串行数据的内部特点,利用数字锁相环等技术提取出和发送端同频、同相的时钟信号CLK8,然后经过帧同步检测模块,建立状态机对串行数据中的TS0时隙的帧同步码元进行检测;这样保证了接收端能够准确无误的恢复发送端的数据。对于高速数据分解为4路支路信号的电路原理刚好和复用端相反,如图5所示。

本文引用地址://m.amcfsurvey.com/article/191080.htm

e.jpg


3.4 分解端功能仿真结果分析
与复接端相反,利用CLKS高频时钟读取串行e的码元信号到锁存器rege中,LD信号为内部逻辑产生的控制信号,负责码元分解搬移。由于一帧信号容量过大,故截取了某帧内的一个时隙以便于观察分解还原功能的实现,在32个CLK8时钟周期内从串行输入数据e采集到的码
元信号锁存在rege移位寄存器中,如图6所示,rege=11100111001110011100111001110011B(E739CE73H),从波形图上可见分解后的支路锁存实时状态值为:rega=111001 11B(E7H);regb=OO11l001B(39H);regc=11001110B(CEH);regd=01110011B(73H),而恢复出4个支路的时隙码元信号为:a:11100111;b:00111001;c:11001110;d:01110011。分解过程及其信号分解还原波形如图6所示。

f.jpg



4 结语
本文主要依据/32基群信号的特点,结合建模仿真,利用QuartusⅡ8.0仿真综合软件,实现4路低速信号的同步时分复用,提高信号传输效率;并在分解端将其分解还原为4路原始信号。功能仿真结果正确,在允许的信号延时下实现了主要功能。基于的设计,便于功能修改和扩展,只需实时修改内部参数即可。


上一页 1 2 3 下一页

关键词: FPGA PCM 30 系统

评论


相关推荐

技术专区

关闭