新闻中心

EEPW首页>EDA/PCB>设计应用> 基于ARM和CPLD的可重构检测系统设计

基于ARM和CPLD的可重构检测系统设计

作者: 时间:2011-03-03 来源:网络 收藏

2.1芯片选择
选用内嵌920T核的EP9315微控制器,选用Alter公司MAX II系列芯片EPM1270。其中, EP9315具有最高可达200MHz的工作频率、16KByte指令缓存、16KByte数据缓存和单/双精度整数及浮点处理能力,还集成了大量适用的外部接口,如IDE接口、USB接口和LCD接口等;EPM1270 型含有1270逻辑元件、100多个可用I/O 引脚,每个IO口都可配置成TTL、LVTTL、CMOS、LVCMOS和施密特触发器模式。以上两芯片均为低成本、低功耗芯片。
2.2的内部结构设计
在该系统中作为主芯片,负责复杂的数据处理、人机交互、图形显示和接口通信等任务,如何合理设计CPLD外部接口和内部结构,将直接影响到系统的功能和程度。CPLD内部结构如图2所示, 它包括时钟发生器、4个定时计数模块、发射脉冲发生模块、采样时序发生模块、光电编码计数模块和中断产生器, 可进行闭环/开环检测。

本文引用地址://m.amcfsurvey.com/article/191335.htm

2.JPG

图2 CPLD内部结构图
2.3 高速板间设计的信号完整性问题分析
为了使该系统架构具有性,笔者将该系统设计成多PCB结构,以ARM作为主芯片的系统板作为主板,以CPLD为核心的扩展板作为背板,由于这个系统为高速系统,这样的设计必将带来信号完整性问题。其中最主要的是信号长距离传输导致信号质量下降和“地弹”现象的产生。
背板设计必将大大增加信号的传输距离,使得信号的质量受到很大影响,笔者在设计中使用信号线上增加数据缓冲器进行隔离和选择源端电阻匹配等方式,很好的解决了信号的有效传输问题。
我们根据实际情况建立如下地弹模型图,如图3所示。从图3中可以看出在ARM芯片逻辑门迅速切换的时候,将引起很大的瞬态电流,由于两板之间的电源连接线上的分布电感Lg的存在,将导致严重的“地弹”现象。根据地弹电压
V=Lg×dI/dt
可知,地弹电压与电源连接线上的分布电感和瞬态电流的大小成正比。因此我们对两板之间的电源连接方式作处理,增加回流导线的面积,尽量减小回流导线的长度,使得回流路径上电感尽量小;同时在信号线上增加抑制瞬态电流的电阻,试验结果表明这种设计较好地解决了电源的完整性问题。

3.jpg
图3 地弹模型图


3结束语
本文介绍了一种基于ARM+CPLD 结构的检测平台的设计方法, 并基于此方法开发了一台用于钢板、锻件和基桩等检测的试验样机。此方法以模块化的方式将ARM及CPLD技术巧妙的结合起来,使基于此方法构建的检测仪器兼有ARM 和CPLD两者的优势,实现了部分控制算法的硬件。与传统的基于MCU 的检测设备相比,具有实时性好检测速度高、外围器件少、兼容性和扩展性好等诸多优点;并具有硬件方案的可重构性, 又更方便于客户的应用开发,且成本低。经现场实验验证,该检测设备大大提高现场检测的速度和智能化。由于该设计方案具有极其灵活的可重构性,所以稍加修改扩展就可应用于其他检测系统中去。

本文作者创新点: 提出了一种基于ARM+CPLD结构的可重构检测系统的设计方法。并根据这一方法开发了一款新型声波检测仪,提高了现场测试的自动化程度。



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭