新闻中心

EEPW首页>EDA/PCB>设计应用> 可重构计算:高效灵活的计算技术

可重构计算:高效灵活的计算技术

作者: 时间:2010-08-18 来源:网络 收藏


通信应用的特征是使用大量的分支指令,这主要是由通信应用中复杂的控制流导致的,但其中较少使用到算术和移位等操作。

可以看到,这几类应用都是属于密集型应用,可以利用硬件加速核心的执行来提高整个应用的性能。应用中较少使用到浮点算术操作,这一点也正好适合利用硬件实现。在多媒体和通信应用中,大量的操作都是针对宽度为一个或多个字节的数据进行的,而在加/解密应用中主要处理的是宽度为1的位数据。针对应用中的这些差异,当前的商业化逻辑器件中提供了大量的不同粒度的资源来支持不同数据宽度的。因此,上述在嵌入式领域中的主流应用都非常适合利用实现。

具有很好的低能耗特征。在传统的处理器计算模式中,大量的能耗耗费在指令的取指、译码过程中;IC模式则因为在硬件电路的设计过程中针对特定应用进行充分优化,具有较低的能耗损失。在可重构计算系统中,能耗最高的计算核心部分转移到了可重构逻辑器件上执行,减轻了通用处理器的负担,减少了相关的能耗。当应用在可重构逻辑器件上执行时,可重构逻辑器件还可以利用自己的器件特性做调整来达到减少系统能耗的目的。例如,在现有的商业化可重构逻辑器件中,芯片上同时存在着多个时钟域,不同的时钟域可以具有各自的时钟频率。可重构逻辑器件能够为芯片上用于执行应用的那部分资源提供高的时钟频率以提高性能,同时可以将其他闲置部分的时钟频率降低以降低能耗,甚至有的器件可以利用门控时钟对芯片上没有在执行计算任务的部分给予断电处理,进一步降低整个系统的能耗损失。

可重构还具有天生的容错(fault-tolerant)特性。因为可重构逻辑器件的可重构特性为错误的检测、诊断提供了方便。同时,可重构逻辑器件拥有大量的可重构逻辑资源,又为错误的掩盖、修复提供了基础。当可重构逻辑器件上出现错误,导致系统故障的时候,可以将可重构逻辑器件上的一部分配置为测试模式发生器,对器件上的某些区域做测试,同时还可以利用器件上的其他资源对测试结果进行分析,以得到具体的错误信息。一旦将错误定位后,可以采用对可重构逻辑器件重新配置的方法,避开产生错误的芯片区域,利用其周边的其他可重构逻辑资源组合替代原本在出错区域上实现的功能。可重构计算系统的高容错性和极强的可靠性满足了恶劣的工作环境对计算系统的苛刻要求,因此当前在航空航天军事等领域对可重构计算系统的需求逐渐增大,例如NASA就已经将运行时可重构计算系统的研发和应用列入了2005年的火星探测计划当中。

可重构计算技术大大缩短了产品上市时间。可重构逻辑器件在很长一段时间里主要用于进行硬件系统的原型设计。这一点在当前新的应用需求下有了进一步发展。利用可重构计算技术的原型系统在经过针对不同应用的不同配置后就成为了相应的产品可以直接投放市场,这消除了需要针对各个应用进行单独设计带来的时间开销,同时减少了设计中出现错误的概率,系统的可靠性也得到了提高。另外,当前的很多应用领域瞬息万变,各种新标准新应用层出不穷。在这种情况下,可重构计算系统能够“以不变应万变”,仍旧利用现有资源,根据实际情况及时调整系统功能以满足市场需求。

在一些关键任务执行中,很多任务要到开始前一刻才能最终确定,可重构计算系统的存在无疑为这类应用也提供了有力的支持。仍旧以NASA为例,他们在航天飞机发射前的几个小时内,才会把当前的一些重要信息配置到机上的可重构逻辑器件中。在火星车的设计中,也在大量关键部件上使用了可重构逻辑器件,以满足系统可能的变动要求。

可重构计算技术还有很多优势。例如,相对于传统的一个平台支持一个应用的做法,可重构计算系统中的同一套硬件设备可以支持多个应用,大大减轻了系统重量,这对于那些对重量有着严格要求的应用领域非常有利。比如,嵌入式领域的“穿戴计算”,还有航天领域里的卫星系统等等。

当前的可重构计算技术主要还是用于尖端技术领域中的计算平台,但随着可重构逻辑器件成本逐渐降低,运行时可重构计算技术不断完善,我们有理由相信可重构计算技术具备的种种优势会使其在更多的领域里大有作为。

面临的关键难题

前文已经提到,可重构计算技术的研究焦点是运行时可重构技术。对运行时可重构技术的研究和应用主要是为了解决在下述两种情况下可重构计算系统中存在的问题。

第一种情况是为了减少应用执行的启动时间。可重构计算系统可以先在器件上配置好应用执行的启动所必需的功能,让应用运行起来。在应用开始执行的同时再在器件的其他部分上配置出后续执行所需要的功能,而不必等待整个应用都配置完成后才开始运行,如图3所示。

本文引用地址://m.amcfsurvey.com/article/191609.htm



评论


相关推荐

技术专区

关闭