新闻中心

EEPW首页>EDA/PCB>设计应用> HDMI 设计指南:HDTV接收机应用中高速PCB的成功设

HDMI 设计指南:HDTV接收机应用中高速PCB的成功设

作者: 时间:2009-05-22 来源:网络 收藏

  由于像素生成需要四个差动 TMDS 信号对(3 个数据信号+1 个时钟信号)的同步传输,因此其必须在相同时间到达接收机。理想情况下,所有四个信号对应该为相等的电气长度,以保证零时间差。但是,对一个 0.2 TCHARACTER + 1.78 ns 的接收机而言,允许一个最大的对间时滞 (信号对之间的时间差),从而会产生总计2.67 ns 的时间,以用于 225 MHz 的 TMDS 时钟。对一个发送器而言,该规范要求产生 888ps 的 0.2 TCHARACTER。

受控阻抗传输线

  受控阻抗线迹可用于匹配传输介质的差动阻抗(例如:线缆)和端接电阻。差动阻抗由信号对线迹的物理几何、它们同邻近接地层的关系以及电介质决定。这些几何形状必须在整个线迹长度上保持一致。

  图5 描述了微波传输带 (Microtrip) 线迹(外层线迹)及带状线线迹(通常是被两个接地层夹在中间的层堆栈内线迹)阻抗计算相关的参数。

图5 差动线迹的物理几何

  为了计算出图 5 中 100Ω 差动阻抗 TMDS 信号对的线迹几何,可以使用闭式方程 1 6。


1、对于松散耦合带状线而言,s > 12 mils,数字 0.748 可能被 0.374 替换。
2、W 2h 时,最大误差为 3%
3、为了获得最佳精确度,使 b t > 2W 及 b > 4t,其中,b 为接地层之间的电介质厚度。

  考虑到差动信号对及其环境之间的距离,图 5 显示了一个线迹 X,其未与邻近的“+”和“”导体中的电流关联。X 可以为另一信号对线迹、一个接地屏蔽线迹或一个 TTL/CMOS 线迹。

  对于邻近信号对和屏蔽线迹而言,使距离 d 等于 3 s。在一侧运行屏蔽线迹(接地更为适宜),可能会创建一个增加 EMI 的失衡。接地线迹屏蔽应该对下层接地层有一个过孔散射。

  请注意!乍一看上面的方程式,其呈现出一种可获得线迹几何的比较便宜的方法。但是,这些函数均基于经验数据,并代表最佳情况下的近似值。实际精确度可能会有非常大的不同,各种原因甚至会引起高达 10% 的可能误差。

  从长远来看,一种更精确、成本更低的方法是使用一个 2D 或更好的场求解器。它是一种可对麦克斯韦 (Maxwell) 方程式求解并计算出任意横截面传输线电场和磁场的软件工具。它还可以由以上这些计算出电气性能项,例如:特性阻抗、信号速度、串扰和差动阻抗。一些场求解器还可以计算出导体内的电流分布情况。相对于近似法而言,一个 2D 场求解器的优势在于其考虑了几乎所有任意横截面几何的灵活性。除了第一阶项(例如:线宽、电介质厚度和电解介质常量)以外,第二阶项(例如:线迹厚度、阻焊和线迹蚀刻背面)均可以被考虑到。

非连续性

  非连续性就是信号路径中差动线迹阻抗偏离于其规定值(100Ω,即 15%)的地方,并假定更高或更低的阻抗值。非连续性可以引起由阻抗不匹配带来的信号反射,进而破坏信号完整性。这些主要是有效线迹宽度或线间间距变化的结果,而这些变化又是由不可避免的沿信号路径线迹几何传输,或由较差的信号线迹布线引起的。
可能发生非连续性的位置为:

HDMI 连接器焊盘同信号线迹相遇处

信号线迹碰到过孔、电阻器组件盘或 IC 引脚处

信号线迹 90o 弯曲处

信号对被分离以围绕一个物体布线的地方

  在差动阻抗、TDR、和测试期间将非连续性探测出来。一个TDR(时间域反射计)是一种用来描绘和定位金属导体中故障的电子仪器。

  一个 TDR 沿导体传输一个快速上升时间脉冲。如果该导体为统一阻抗,并被正确地封端 (terminated),那么整个发射脉冲将在远端终端被吸收,且没信号会被反射回 TDR。但是,存在阻抗非连续性的情况下,所有非连续性都将构成一个被反射回反射计(reflectometer)的回波。阻抗增加会产生一个增强原始脉冲的回波,与此同时,阻抗减少会产生一个同原始脉冲相对的回波。

  在输出/输入端测量出产生的 TDR 反射脉冲,其将以时间函数的形式显示或绘制出来,因为给定传输介质中信号传播的速度相对不变,并且可以以线迹长度函数的形式被读取出来。


图6 TDR 显示表明了非连续性的位置

设计的目的在于尽可能将非连续性最小化,从而消除反射并保持信号完整。遵循一组布线指南,有助于避免不必要的非连续性。剩下的不可避免的非连续性应集中在一起,也就是说将这一区域的面积应保持较小,并尽可能的紧密放置。这一想法就是将各个反射点集中在某个区域,而不是将其分布在整个信号路径里。

  利用 TDR 看到的大量非连续性直接受到 TDR 使用的脉冲边缘速率的影响。TDR 边缘速率越快,出现的非连续性就会越多,并且阻抗峰值就越大。通过 HDMI 规范,他们定义了边缘速率(通常为 200ps)。图 6 对该点进行了描述。图中的低线压采用 30ps 边缘速率,高线压采用 200pf 滤波器。当使用 200ps 边缘速率滤波器时,由出现在低线压上的 TPA 电路板 SMA 产生的非连续性均为完全不可见。

布线指南

  当试图保持信号完整性和低 EMI 时,具有布线的一些指南是必不可少的。尽管似乎有无数的预防方法可以采用,但是本章节仅仅推荐使用一些主要的布局指南。

1、在不匹配点上采用小弯曲度修正,可减少差动对内的时滞。

2、减少由组件放置和 IC 外脚引线以及信号路径上较大角度修正所引起的对间时滞。采用斜切式弯曲 (chamfered corner),其长度和线宽之比为 3 比 5。弯曲之间的距离应最少为线宽的 8 到 10 倍左右。

3、使用45 o 弯曲(斜切式弯曲)替代直角(90o)弯曲。直角弯曲会增加有效线宽,改变差动线迹阻抗,从而出现一个较短的中断点。一个45o 弯曲可以看作是一个时间更短的中断点。

4、当在一个物体周围进行布线时,应对并联的一对线迹进行布线。将线迹分离开来布线会改变线与线之间的间距,从而引起差动阻抗的改变以及非连续现象的出现。

图8 在一个物体周围的布线



评论


相关推荐

技术专区

关闭