新闻中心

EEPW首页>测试测量>设计应用> 一种多路图像采集系统的软件设计

一种多路图像采集系统的软件设计

作者: 时间:2011-07-08 来源:网络 收藏

  4 帧存储控制器与LCD/VGA显示控制器的设计

  4.1 数据格式的转换

  根据前面第2节的介绍,从ITU656解码模块出来的数据为8位4:2:2的YUV空间图像数据,而LCD/VGA显示器只能接收RGB数据。因为Y-CrCb4:2:2格式不能直接转换为RGB,所以需要先转换为YCrCb4:4:4格式。

  我们知道解码芯片得到的视频数据是顺序为Cb,Y,Cr,Y,Cb,Y,Cr,……的序列,存储的时候将一个Y与一个C(Cb或Cr)结合起来组成一个16位的数据。而当数据被读出来时就要将这些视频数据转换为每个像素占24位(Y、Cb、Cr各占8位)的4:4:4的数据流。4:2:2到4:4:4的转换采用最简单的插值算法,在采样的时候,每隔一个像素才采一次色度值(Cb和Cr)。在转化时,直接将前一个有色度信息的像素点的Cr以及Cb的值直接赋给后一个像素的Cr和Cb,这样就能得到4:4:4的像素数据,每个像素占用24位位宽。

  4.2 帧存储控制器

  作为系统的重要组成部分,帧存储控制器主要用来进行有效数据的缓存。视频数据在FPGA1的控制下乒乓写入两片SRAM。乒乓技术应用的关键在于乒乓切换信号frame的产生,本系统中根据视频解码芯片的奇偶场信号RTS0来产生帧切换frame信号,也就是一个RTS0周期切换一次。一个RTS0周期由一个奇场和一个偶场组成,是一副完整的画面。当frame为1是,FPGA通过计数器的计数截取最终显示所需要的有效的像素点信息按照SRAM的控制时序写入SRAM1,同样当frame为0时,将对应的像素信息写入SRAM2,如图5所示。

乒乓存储示意图

图5 乒乓存储示意图

  系统加电的同时,4片视频解码芯片同时工作,为了保证数据采集的准确性和显示的同步性,系统内生成一个八倍于像素时钟的写时钟信号write_clk,这样,在一个像素时钟周期,写时钟信号已经过了八个周期,而每两个周期分别完成一路图像数据的写过程。

  由于SRAM是一维存储空间,一个地址对应一个数据。所以在写入数据时将SRAM的地址空间划分为4段,每一段用来存储一路图像数据。

  用程序实现比较简单,设置一个地址寄存器sram_addr_reg,将它赋给SRAM的地址控制信号sram_addr。然后在对每一路图像写入时,将对应的SRAM的起始地址加上一个固定的基数。如:


  这样就保证了SRAM中对应地址的数据和屏幕上显示位置的一一对应关系,在读程序中,只需要按照顺序读SRAM即可,如图6所示。

SRAM地址验证

图6 SRAM地址验证



评论


相关推荐

技术专区

关闭