新闻中心

EEPW首页>测试测量>设计应用> 光栅与编码器介绍

光栅与编码器介绍

作者: 时间:2009-08-04 来源:网络 收藏

3.单场扫描的干涉测量原理

  对于栅距很小的,指示是一个透明的相位,标尺光栅是自身反射的相位光栅,光束是通过双光栅的衍射,在每一级的诸光束相互干涉,就形成了莫尔条纹,其中+1和-1级组干涉条纹是基波条纹,基波条纹变化的周期与光栅的栅距是同步对应的。光调制产生3个相位相差120°的测量信号,由3个光电元件接收,随后又转换成通用的相位差90°的正弦信号. Heidenhain LF、LIP、LIF系列光栅尺是按干涉原理工作,其光栅尺的载体有钢板、钢带、玻璃和玻璃陶瓷,这些系列产品都是亚微米和纳米级的,其中最小分辨力达到1纳米。

  在80年代后期栅距为10μm的透射光栅LID351(分辨力为0.05μm)其间隙要求就比较严格为(0.1±0.015)mm。由于采用了新的干涉测量原理对纳米级的衍射光栅安装公差就放得比较宽,例如指示光栅和标尺光栅之间的间隙和平行度都很宽(表1所示)。只有衍射光栅LIP372的栅距是0.512μm,经光学倍频后信号周期为0.128μm,其他栅距均为8μm和4μm,经光学二倍频后得到的信号周期为4μm和2μm,其分辨力为5nm和50nm,系统准确度为±0.5μm和±1μm,速度为30m/min。LIF系列栅距是8μm,分辨力0.1μm,准确度±1μm,速度为72m/min。其载体为温度系数近于0的玻璃陶瓷或温度系数为8ppm/K的玻璃。衍射光栅LF系列是闭式光栅尺,其栅距为8μm,信号周期为4μm,测量分辨力0.1μm,系统准确度±3μm和±2μm,最大速度60m/min,测量长度达到3m,载体采用钢尺和钢膨胀系数(10ppm/K)一样的玻璃。

四、光栅测量系统的几个关键问题

   1.测量准确度(精度)

   光栅线位移传感器的测量准确度,首先取决于标尺光栅刻线划分度的质量和指示光栅扫描的质量(栅线边沿清晰至关重要),其次才是信号处理电路的质量和指示光栅沿标尺光栅导向的误差。影响光栅尺测量准确度的是在光栅整个测量长度上的位置偏差和光栅一个信号周期内的位置偏差。

   光栅尺的准确度(精度)用准确度等级表示,Heidenhain定义为:在任意1m测量长度区段内建立在平均值基础上的位置偏差的最大值Fmax均落在±α(μm)之内,则±α为准确度等级。Heidenhain准确度等级划分为:±0.1、±0.2、±0.5、±1、±2、±3、±5、±10和±15μm。由此可见Heidenhain光栅尺的准确度等级和测量长度无关,这是很高的一个要求,现在还没有见到其他生产厂家能够达到这一水平。



关键词:光栅码器介绍

评论


相关推荐

技术专区

关闭