新闻中心

EEPW首页>医疗电子>设计应用> 便携式电池供电医疗设备中钽电容的使用

便携式电池供电医疗设备中钽电容的使用

作者: 时间:2010-10-21 来源:网络 收藏

本文引用地址://m.amcfsurvey.com/article/199798.htm

  为确定的 DCL 限值,对多个生产批次中的外壳尺寸为 D 和 F 的 MAP 47µF-10V 电容进行了批量测试,并对每个电容的在不同保压时间(60 秒)下的 DCL 和对应的保压时间都进行了记录,如图7 所示。然后采用统计分析方法,确定每个批次的较低 DCL。另外,还采用独特的成型工艺强化了负极,以提升和降低电容的DCL性能。对任何与标准批次相悖的DCL曲线都予以关注,最后找出DCL的较低限值。

  图4所示的是各种封装选择和每种封装选择的体积要求。威世的572D系列既能满足DCL要求,又具有最高的体积效率,体积仅为8.39 mm3。如果对空间的要求不是那么严苛的话,该应用也可使用MLCC。X5R电介质MLCC的DCL低至187nA,与选择一样,只要一个大容量电容就能满足要求。MLCC X7R电介质电容的电容温度系数比X5R更加优越,但要组成大容量电容需要两个MLCC电容并联。

  在某些电路中,施压后电容器保持电容的能力是一个重要的考量因素。对X5R电介质MLCC,在选择元件的额定电压时,应考虑其电容电压系数 (VCC)。如果包括纹波电压在内的直流应用电压接近MLCC的额定电压,VCC效应会导致该元件损耗部分电容。电容损耗可能会影响电路工作。另外,在选择元件的时候,还需要考虑温度对MLCC的IR的影响以及电容温度系数 (TCC)。生产厂家会提供特定电介质随温度上升IR的劣化曲线。设计时应对温度效应进行评估。

  改善钽电容的DCL

  钽电容的电介质层是一层五氧化二钽薄膜,覆盖在每颗钽芯表面上。其采用阳极化工艺,由厚5nm~10nm的N型氧化钽层和五氧化二钽纯半导体层复合而成。层厚与阳极化电压成比例,同时决定了元件的额定电压。对用于6V电池应用的固钽电容而言,最终的钽电介质层厚度为0.04微米或者40纳米。

  超大容量的MLCC则采用浇覆厚度为2.0微米的陶瓷电介质薄层的方式来制造,这样比钽电容的要厚得多。MLCC采用层叠工艺,最终制造出多层电容。与钽电容一样,MLCC的电介质层厚度决定了额定电压,电介质层数决定了容量。介电常数的差异导致了IR的巨大差别。

  钽电容的DCL会因为正极表面的机械损坏或者氧化层表面的破裂而上升。如图8所示,正极的外表面属于易损部分,受到热、机械和电气作用的共同影响。表面DCL会受湿度的影响,并导致长时间工作的不稳定。

  改进钽芯的生产工艺,更好地控制氧化物层的厚度,可以帮助消除如图 8所示的表面DCL问题。在钽芯的外表面生成较厚的电介质薄膜,防止其受到机械损坏,从而大幅改善DCL性能,降低DCL。除了改进钽电容的正极结构,与聚合物负极结构相比,钽电容的二氧化锰负极结构具有更为优异的 DCL 性能,因该材料有更好的导电性。

  图9显示了采用这种新技术制造而具有出色DCL性能的新型MAP 0603封装。结合对钽芯的改进,最新 MAP 系列钽封装能够改善装配、封装和端接工艺,避免机械损坏,提升电容的体积效率。

  改进医用级钽电容的DCL可靠性

  因为某些需要高可靠性,特别是对关键任务型应用而言,电容生产厂家提供稳健且保守的设计来满足性能需求。通过精心的钽芯和钽粉设计,医用钽电容的性能会高出标准的商用钽电容以及采用传统技术生产的高可靠产品。

采用这种新技术制造而具有出色DCL性能的新型MAP 0603封装

  图9

  生产厂家会对每种设计适用的钽粉进行评估。随电容器CV的增长,失效率随之增长,因此应针对具体的设计选择合适粒径的钽粉。对医用级设计而已,其目的是在可用的外壳尺寸范围内提供更为可靠的DCL性能。对商用级设计而言,其目的是通过以最小的可用外壳尺寸提供更高的-k CV钽粉,从而尽量降低成本,最大化设计收益。因此商用钽电容的DCL总体上会高于医用钽电容。

  下面举例说明目前的医用TM8系列DCL改进后与传统高可靠194D系列的对比情况。

  图10对F外壳尺寸的194D系列设计与TM8系列设计进行了比较。194D是一种用于众多高可靠应用中的老式设计。钽芯设计采用高-k CV粉末,为23kCV。而 TM8 是一种较新的医用级设计,使用10Kvc粉末,大幅度改善了DCL性能,而且采用的最新 MAP 装配工艺,不会增加板级空间占用。

医疗设备中的高蓄能钽电容 www.elecfans.com

  图10

中的高蓄能钽电容

  小型或者植入型心律转复除颤器 (ICD) 适用于与可能因室性快速型心律失常而突发心脏病死亡的患者。除颤器与ICD具有类似功能,都是设计用于为心脏提供电疗,恢复正常心律。电疗线路采用高能充电电容,用于电击心脏组织。

  某些设计采用高能铝电解电容,但需要后备电池以及一个用来实现重整期的程序,以在设备的生命周期内保持良好的充电效率。与铝电解电容相比,高能湿钽充电电容无需重整,且具有更高的能量密度。

  电容的储能能力取决于电介质的相对电容率的值的大小和材料内的最大可允许电压。当电场出现后,任何电容电介质的导电行为都会导致电容损耗。而且损耗会随电场变化而加大,比如交流电。电介质的分子存在出现某种程度的极化,而在电场出现后,初始的时候这些分子的位移是相反的。部分能量消耗在分子的位移上,并在这个过程中消耗殆尽。当电场变化或者消失,这种损耗就体现为热量。

  箔式铝电解电容浸没在导电电解质中。电介质由铝箔表面的氧化膜构成,其厚度一般为50到100纳米,其决定了单位电极面积的容量。钽电容也有氧化物膜层,但厚度要小得多,一般只有5到10纳米。选择储能设备使用的电容类型时,需要考虑工作寿命、板级空间和成本要求。因为心脏除颤需要非常高的能量,所以只有铝电解电容和湿钽电容适用。

  结论

  本文讨论了的各种应用及其使用的电路。针对这些便携式应用,有多种电容可供选择。选择适用于这类应用的电容时,优先考虑的电气参数是电容的DCL和ESR。由于某些医疗应用对可靠性和电池使用寿命要求极高,一些电容无法适用。

助听器原理相关文章:助听器原理



上一页 1 2 3 4 下一页

评论


相关推荐

技术专区

关闭