新闻中心

EEPW首页>嵌入式系统>设计应用> 8051单片机I/O引脚工作原理

8051单片机I/O引脚工作原理

作者: 时间:2016-11-25 来源:网络 收藏

在取指令期间,“控制”信号为“0”,V1管截止,多路开关也跟着转向锁存器反相输出端Q非;CPU自动将0FFH(11111111,即向D锁存器写入一个高电平‘1’)写入P0口锁存器,使V2管截止,在读引脚信号控制下,通过读引脚三态门电路将指令码读到内部总线。请看下图

如果该指令是输出数据,如MOVX@DPTR,A(将累加器的内容通过P0口数据总线传送到外部RAM中),则多路开关“控制”信号为‘1’,“与门”解锁,与输出地址信号的工作流程类似,数据据由“地址/数据”线→反相器→V2场效应管栅极→V2漏极输出。

如果该指令是输入数据(读外部数据存储器或程序存储器),如MOVXA,@DPTR(将外部RAM某一存储单元内容通过P0口数据总线输入到累加器A中),则输入的数据仍通过读引脚三态缓冲器到内部总线,其过程类似于上图中的读取指令码流程图。

通过以上的分析可以看出,当P0作为地址/数据总线使用时,在读指令码或输入数据前,CPU自动向P0口锁存器写入0FFH,破坏了P0口原来的状态。因此,不能再作为通用的I/O端口。大家以后在系统设计时务必注意,即程序中不能再含有以P0口作为操作数(包含源操作数和目的操作数)的指令。

二、P1端口的结构及工作原理

P1口的结构最简单,用途也单一,仅作为数据输入/输出端口使用。输出的信息有锁存,输入有读引脚和读锁存器之分。P1端口的一位结构见下图.

由图可见,P1端口与P0端口的主要差别在于,P1端口用内部上拉电阻R代替了P0端口的场效应管T1,并且输出的信息仅来自内部总线。由内部总线输出的数据经锁存器反相和场效应管反相后,锁存在端口线上,所以,P1端口是具有输出锁存的静态口。

由上图可见,要正确地从引脚上读入外部信息,必须先使场效应管关断,以便由外部输入的信息确定引脚的状态。为此,在作引脚读入前,必须先对该端口写入1。具有这种操作特点的输入/输出端口,称为准双向I/O口。8051单片机的P1、P2、P3都是准双向口。P0端口由于输出有三态功能,输入前,端口线已处于高阻态,无需先写入1后再作读操作。

P1口的结构相对简单,前面我们已详细的分析了P0口,只要大家认真的分析了P0口的工作原理,P1口我想大家都有能力去分析,这里我就不多论述了。

单片机复位后,各个端口已自动地被写入了1,此时,可直接作输入操作。如果在应用端口的过程中,已向P1一P3端口线输出过0,则再要输入时,必须先写1后再读引脚,才能得到正确的信息。此外,随输入指令的不同,H端口也有读锁存器与读引脚之分。

三、P2端口的结构及工作原理:

P2端口的一位结构见下图:

由图可见,P2端口在片内既有上拉电阻,又有切换开关MUX,所以P2端口在功能上兼有P0端口和P1端口的特点。这主要表现在输出功能上,当切换开关向下接通时,从内部总线输出的一位数据经反相器和场效应管反相后,输出在端口引脚线上;当多路开关向上时,输出的一位地址信号也经反相器和场效应管反相后,输出在端口引脚线上。

对于8031单片机必须外接程序存储器才能构成应用电路(或者我们的应用电路扩展了外部存储器),而P2端口就是用来周期性地输出从外存中取指令的地址(高8位地址),因此,P2端口的多路开关总是在进行切换,分时地输出从内部总线来的数据和从地址信号线上来的地址。因此P2端口是动态的I/O端口。输出数据虽被锁存,但不是稳定地出现在端口线上。其实,这里输出的数据往往也是一种地址,只不过是外部RAM的高8位地址。

在输入功能方面,P2端口与P0和H端口相同,有读引脚和读锁存器之分,并且P2端口也是准双向口。

可见,P2端口的主要特点包括:

①不能输出静态的数据;

②自身输出外部程序存储器的高8位地址;

②执行MOVX指令时,还输出外部RAM的高位地址,故称P2端口为动态地址端口。

即然P2口可以作为I/O口使用,也可以作为地址总线使用,下面我们就不分析下它的两种工作状态。

1、作为I/O端口使用时的工作过程

当没有外部程序存储器或虽然有外部数据存储器,但容易不大于256B,即不需要高8位地址时(在这种情况下,不能通过数据地址寄存器DPTR读写外部数据存储器),P2口可以I/O口使用。这时,“控制”信号为“0”,多路开关转向锁存器同相输出端Q,输出信号经内部总线→锁存器同相输出端Q→反相器→V2管栅极→V2管9漏极输出。

由于V2漏极带有上拉电阻,可以提供一定的上拉电流,负载能力约为8个TTL与非门;作为输出口前,同样需要向锁存器写入“1”,使反相器输出低电平,V2管截止,即引脚悬空时为高电平,防止引脚被钳位在低电平。读引脚有效后,输入信息经读引脚三态门电路到内部数据总线。

2、作为地址总线使用时的工作过程

P2口作为地址总线时,“控制”信号为‘1’,多路开关车向地址线(即向上接通),地址信息经反相器→V2管栅极→漏极输出。由于P2口输出高8位地址,与P0口不同,无须分时使用,因此P2口上的地址信息(程序存储器上的A15~A8)功数据地址寄存器高8位DPH保存时间长,无须锁存。

四、P3端口的结构及工作原理

P3口是一个多功能口,它除了可以作为I/O口外,还具有第二功能,P3端口的一位结构见下图。

由上图可见,P3端口和P1端口的结构相似,区别仅在于P3端口的各端口线有两种功能选择。当处于第一功能时,第二输出功能线为1,此时,内部总线信号经锁存器和场效应管输入/输出,其作用与P1端口作用相同,也是静态准双向I/O端口。当处于第二功能时,锁存器输出1,通过第二输出功能线输出特定的内含信号,在输入方面,即可以通过缓冲器读入引脚信号,还可以通过替代输入功能读入片内的特定第二功能信号。由于输出信号锁存并且有双重功能,故P3端口为静态双功能端口。

P3口的特殊功能(即第二功能):

口线

第二功能

信号名称

P3.0

RXD 串行数据接收

P3.1 

TXD 串行数据发送

P3.2

INT0 外部中断0申请

P3.3

INT1 外部中断1申请

P3.4

T0 定时器/计数器0计数输入

P3.5 

T1 定时器/计数器1计数输入

P3.6

WR 外部RAM写选通

P3.7

RD 外部RAM读选通

使P3端品各线处于第二功能的条件是:

1、串行I/O处于运行状态(RXD,TXD);

2、打开了处部中断(INT0,INT1);

3、定时器/计数器处于外部计数状态(T0,T1)

4、执行读写外部RAM的指令(RD,WR)

在应用中,如不设定P3端口各位的第二功能(WR,RD信叼的产生不用设置),则P3端口线自动处于第一功能状态,也就是静态I/O端口的工作状态。在更多的场合是根据应用的需要,把几条端口线设置为第二功能,而另外几条端口线处于第一功能运行状态。在这种情况下,不宜对P3端口作字节操作,需采用位操作的形式。

端口的负载能力和输入/输出操作:

P0端口能驱动8个LSTTL负载。如需增加负载能力,可在P0总线上增加总线驱动器。P1,P2,P3端口各能驱动4个LSTTL负载。

前已述及,由于P0-P3端口已映射成特殊功能寄存器中的P0一P3端口寄存器,所以对这些端口寄存器的读/写就实现了信息从相应端口的输入/输出。例如:

MOVA,P1;把Pl端口线上的信息输入到A

MoVP1,A;把A的内容由P1端口输出

MOVP3,#0FFH;使P3


上一页 1 2 下一页

关键词:8051单片机IO引

评论


技术专区

关闭