新闻中心

EEPW首页>电源与新能源>设计应用> 基于BUCK调压的小功率高压电源

基于BUCK调压的小功率高压电源

作者: 时间:2016-12-07 来源:网络 收藏

可关断晶闸管(GTO)、静电感应晶闸管(SITH)等。在选取开关器件时,主要可从以下五个方面考查电器件的性能特点:①导通压降,②运行频率,③器件容量,④耐冲击能力,⑤可靠性。

本文引用地址://m.amcfsurvey.com/article/201612/327471.htm

  在本系统中,需要全控性的(能够自关断)开关器件,IGBT是具有功率MOSFET高速开关特性和双极晶体管的低导通电压特性的两者优点并存的电力半导体器件,可以高速开关、耐高压和大电流,所以本设计选取MOSFET作为开关器件。

  (3)主要参数计算及仿真波形

  一般输出公率500W以下时,考虑采用半桥仿真逆变电路如图7所示。

  仿真波形如图8所示,两个MOSFET受给定的脉冲信号控制,一个开通一个关断,并且有一段死区时间,经过半桥逆变电路后,输出给高频变压器的电压为交流70V左右。

  3)高频变压器的设计

  高压电源高频化的优点是装置小型化,系统的动态反应快;电源装置效率高;有效抑制环境噪声污染。但高压电源高频化发展的阻碍主要体现在高频高压变压器上,其主要问题是:一、高频变压器体积减小,但绝缘问题突出。二、电压输出高则变压器的变比较高,而大变比必然使变压器的非线性严重,使其漏感和分布电容大大增加。

  图9为高频高压变压器等效电路简化模型,它由漏感LD、副边分布电容Cp 和理想变压器组成。漏感同样时工作于高频fs下的感抗较工频下增加fs /50倍,严重限制了功率输出;分布电容相同时高频下的容抗较工频下减小至50/fs ,导致空载电流大,功率因数低,空载发热问题突出。对上述问题的处理方法是变压器真空浸油处理(受实验条件所限,本设计并未采用),并采用大磁芯保证足够的绝缘距离,以减小分布电容Cp及其影响,但Cp减小必使LD 增加。

  4)倍压电路的设计

  (1)倍压电路

  本设计在升压变压器输出后采用了倍压电路二次升压,这样可以减小变压器的体积,提高效率。倍压整流不仅可以将交流电转换成直流电(整流),而且不需要再增加滤波电容。它能够在一定的电压之下,得到高出若干倍的直流电压(倍压)。只要倍压电路中使用电容的总体积不是很大,就可以减小整个电源设备的体积。

  现就图10所示四倍压整流电路进行分析。在分析过程中,均假设各电容的充电速度远大于放电速度,并将导通的二极管用短路线来代替。

  开始工作后,在第一周期的正半周,电压u经二极管VD1给电容C1充电到um,在负半周u与C1 上的电压串联起来给C2 充电。在下一周期的正半周,电压u在给C1充电的同时,由于VD1已导通,C3 上尚无电压,故C3将通过VD1、VD3向C3充电;在负半周,u与C1在向C2充电的同时C3也向尚无电压的C4 充电。四倍压电路在这个周期正、负半周的工作过程如图11所示。

  由此可看出,在这种倍压整流电路中其能量是由前向后逐步传递的,每过半个周期便向后传递一步。四倍压整流电路经过4个半周期,即两个周期就有一部分能量传到最后的电容C4 上。在以后的各周期中,正半周重复图11(a)的过程,负半周重复图11(b)的过程。经过若于个周期后,除电容C1 上的电压为um外,其余电容上的电压均为2um 。负载RL上得到的电压为C2、C4上电压之和即4um 。以此类推,对于四级级(八倍压)整流电路,也可以得到相同的结论。本设计所用的八倍压整流电路如图12所示:

  (2)仿真波形

  由高频变压器输入给倍压电路的交流电压大约2千伏,经八倍压整流电路的倍压整流,最后输出直流电压可达15千伏左右。如下图是将半桥逆变电路,高频变压器,倍压电路一起进行的仿真实现电路。如图13。

  如图14所示,输入高频变压器的电压为交流70V,通过变比为30的高频变压器输出电压升高为2kV左右,再通过八倍压整流电路,最后输出电压15kV左右。

  控制电路

  按常规闭环设计思想,闭环的反馈电压应取自输出电压,但课题中高压电源的输出电压高达15KV,那么,当反馈电压取自输出电压时,这势必对采样隔离电路提出较高的绝缘要求,在实际中会难于实现,也会增加电源的制作成本。考虑到以上情况,课题中的闭环设计的采样电压取自BUCK电路的输出电压。

  根据经验选取,PI调节器的运算放大器选用LM7131B/NS,比较器选用LM339。R1=20K,R2 =100K,C=5n。

  PSPICE中闭环电路原理图,如图15所示。

  通过PSPICE仿真得到如图16波形:

  如图所示,当基准电压Vref=-2V时,输出直流12V左右,当基准电压Vref =-2.5V时,输出直流电压15V左右,可见通过调节基准电压Vref 的值,可以实现本设计0-15KV大范围可调。如图可见,电压闭环驱动控制下输出电压的波形符合设计技术参数要求。

  由前面波形可以看出,闭环电路可以正常工作,在加输入扰动后可以基本实现调节的无净差。到此基本完成课题设计中高压电源的原理设计,下面给出实际电路中的芯片控制驱动。

结论

  本文介绍的一种基于BUCK调压的小功率高压电源,其特点是:①采用了倍压电路,减小了变压器的变比,使其在工艺和制造上成为可能,并且能够在一定条件下实现零电流软开关,从而大大减小了开关损耗;②该电源可以工作在110V、220V不同电压下,因为开拓了国内外市场;③该拓扑结构简单,易于实现;④该电源利用了DSP,实现了数字PI的实时控制,因而能良好的工作且实现远程通信。

  课题设计主要在PSPICE软件中完成,首先分析了高压电源系统各个环节的基本工作原理和仿真优化,其次,在开环设计的基础上进行了系统的闭环设计,调节电路各个参数使闭环系统的各项指标均达到要求,并且在存在扰动的情况下可以实现闭环系统的无净差调节。

  通过课题高压电源的设计过程,可以得到以下结论:

  ①针对系统要求输出电压为0-15KV,且输出功率为15W的情况,选用BUCK调压电路与桥式逆变电路相组合得到高频脉冲电压,后经过高频变压器和倍压电路完成升压和整流作用。

  ②BUCK闭环环节使用光电耦合器HCNR201进行电压采样隔离,MOSFET的隔离驱动使用HCPL4504和UCC27321共同完成,保证驱动电路工作的有效性和安全性。

  ③逆变电路的控制电路由芯片SG3535和IR2110共同完成。SG3525控制器集成了过压保护、过流保护、软启动、欠电压锁定、击穿短路保护等功能保证控制信号的准确性。SG3525输出的PWM信号通过两片IR2110后驱动逆变电路的两个桥臂,这保证了驱动信号间的死去时间,防止桥臂的直通现象。

  ④电路设计中摈弃传统工频变压器升压模式,而采用高频变压器和倍压电路共同完成升压作用,在减小系统体积上有突出作用。


上一页 1 2 下一页

评论


技术专区

关闭