新闻中心

EEPW首页>电源与新能源>设计应用> 现有光伏和太阳能并网系统的电池后备电源选项

现有光伏和太阳能并网系统的电池后备电源选项

作者: 时间:2016-12-09 来源:网络 收藏

utBack公司的控制电路由该公司生产的两个逆变器辅助(AUX)端口和两个继电器组成。这种更清新、更紧凑的组件设计在电池充满电时可对并网逆变器进行安全锁定;此外,当系统中有发电机启动并运行时,还可使并网逆变器保持锁定状态。结合更先进、更智能的逆变器/充电器,如具有双AC输入和先进发电机功能的OutBack弧度系列,该系统可以在较低的实际成本内实现更高的性能。

本文引用地址://m.amcfsurvey.com/article/201612/328315.htm

OutBack GSLC175-AC-120/240 AC耦合解决方案的显著特征包括:

● UL-1741端到端特性—与OutBack电池架一起使用时,由于整个系统是专门针对这一应用而设计,因此可以确保完全兼容。

● 分相设计—无需昂贵、低效的变压器便可更容易地集成到标准的室内电路中。

● 动态稳定性—输出更加稳定,因此可以在负荷高峰期或变化期为系统中的并网逆变器提供清晰的信号,确保其持续以线上状态发电。

● 通用设计—可与其他品牌和型号的并网逆变器配合使用。

需要考虑的因素包括电网的不稳定性、极端天气和地震等,同时,地理和季节缺陷也会影响到最重要临界负荷的选择。以下提供了一些关于如何选择系统尺寸以及如何与两种不同类型逆变器系统进行交互的指南。

指南一

每日临界负荷瓦时不应超过可从电池组获得所有瓦时的80%。离网系统通常每天会将电池放电50%以上,从而延长电池的寿命。然而,这种情况是基于每年仅有几天或一到两周使用备用系统的假设,在这种情况下,放电深度达80%的电池的寿命才不会低于其正常寿命。根据Outback的能量电池寿命检测结果显示,密封的AGM电池放电深度为80%时,电池可使用高达600次,也就是说当使用后备电源提供一天所需能量时,可使用600天。

电池充电和放电的速度均会影响电池的整体容量。电池充电或放电的速度越慢,电池容量越大。表1展示了一至六组电池的典型容量。可以使用这些数据的80%来估测24小时内负荷所需的电能。表2中的12小时放电率也会反映出这一点。

在电网供电的正常运行条件下,Outback的电池逆变器/充电器会将电池保持在浮动充电状态,在该状态下,电池将保持低充电率,从而补充电池内部因自放电而流失的能量。然而,在电网无法供电的情况下,逆变器不再控制流入电池的充电电流。电池逆变器处于“转换”模式,并为并网逆变器提供交流电流,使并网逆变器保持在线状态并为临界负荷供电。负荷不需要的剩余能量将会以不规则充电的方式通过电池逆变器的双向H桥电路回流至电池中。在多数情况下,光伏阵列产生的电能会通过并网逆变器输送给负荷并对电池进行不规则充电。如果系统尺寸正好合适,电池组的不规则充电率不会超过最大充电率。但是,在所有或几乎所有临界负荷都关闭的最糟糕情况下,并网逆变器中流出的电流不应超过电池组的最大充电率。Outback的遥控断路器(ROCB)可在检测到电池已充满时轻松地使并网逆变器下线。

表2给出了每组电池能提供的最大光伏功率以确保充电率不超过最大值,同时给出了在指定24小时内电池的相关可用电能。依据阵列获得的太阳辐射及负荷所需的能量,系统应选择能够使其保持平衡的尺寸。用光伏电能和负荷需求之间的关系无法预测,在晴天时,即使关掉并网逆变器,只要有阳光,电池组也可能很快会被充满,这样就可以避免电池组过度充电的现象出现。在阴天时,单纯依靠光伏阵列可能无法充满电池,因此需要一个发电机来完成对电池的充电。如果系统中没有发电机,则需要对负荷做一些取舍,看看哪些是可以留下来继续使用的,哪些可以在晴朗天气到来前暂时放弃或屏蔽的。

光伏功率一栏给出的是可通过逆变器发回给电池充电的最大功率值。在测算该值时,应假定阵列和并网逆变器中存在流失的电量。

负荷需求(kWh)需匹配表2中的一个值,从而匹配实际的光伏阵列尺寸及被转移至临界负荷面板的负荷。表3给出的典型负荷配置文件可用于估算一些典型的临界负荷。注意,冰箱每小时有十五分钟在进行制冷循环。

所以,如果将每日12.4kWh的用电量与电池容量表对比,可以发现一组电池不够用,而两组电池虽然足够用,但阵列大小必须在4kW或以下。如果阵列大小为6kW,则需要三组电池,且电池组的尺寸必须大到足以应对最糟糕情况下出现的最大不规则充电率。分流负载解决方案将被作为备选方案。然而,在综合考虑成本、分流负荷的复杂度和侵袭性以及分流负荷保护和控制时,减掉一组电池实际上起不到什么作用。

指南二

OutBack逆变器的额定功率应为并网逆变器额定功率的1.25%。在负荷需求降到0且所有可用的并网逆变器电能均输入到OutBack逆变器的情况下,本指南可确保并网逆变器不会使OutBack逆变器的充电电路失效。尽管这种情况公认不太可能发生,但出于安全和保护设备的考虑,最好遵循本指南。例如,额定功率为8kW的Radian逆变器可能会对功率不大于6kW的并网逆变器产生影响。

指南三

本指南可确保日常负荷需求或电池充电量均不超过从光伏阵列所得的电量,或可在后备系统中任选添加一个发电机。当可得光伏电量超过负荷需求的场景,当电池充满时,需要使用一个OutBack遥控断路器将并网逆变器断开。而实际上,后备系统生产出多于负荷和电池充电需求的光伏电量是不太可能的。临界负荷基本很少全部关闭,而且在很多情况下,尤其是在阴天时,需要补充电量来满足负荷和电池充电需求。

北美大部分地方平均每天有3小时~5小时的日照时间,也就是说,尽管每日发电量因为这样或那样的原因会有大量流失,但是使用6kW电池阵列每天仍可获取18kWh~30kWh的光伏电量。但是,有时光伏产量会达到或超过光伏组件标注电量,所以为了实现评估目的,将18kWh~30kWh视为正常电量,以确定阳光明媚的天气中能够获得的电量。

假设上述例子中所有负荷均同时打开,平均每小时会通过并网逆变器的光伏阵列获取1.4kW的电量。如果光伏阵列生产的电量达到其标注值,则会遗留4.6kW电量用于电池充电。如果使用3组电池组且放电深度为80%,需要4.2小时(19.5kWh÷4.6kW=4.2hrs)完成电池充电,同时还可提供1.4kW电能满足负荷所需。当电池充满,并网逆变器关闭时,在电池放电深度达到80%之前,负荷需求可以支撑14小时左右—大概从太阳落山持续至睡前,同时电池残余电量还可用于第二天早上为并网逆变器供电,这样一来,并网逆变器就可以从光伏阵列中传递电量,再一次启动这一循环。

但是,在阴天时或当冬季日照时间低于平均水平时,需要使用一台发电机来确保任何时候都有充足的后备电量。一个5kW的发电机能够花5.4小时的时间充满电池组使其再运行14小时,同时还可预留1.4kW电量满足负荷所需(19.5kWh÷(5kW-1.4kW)=5.4hrs)。如前所述,相比低负荷情况下运行的发电机,最大输出达到85%~95%的发电机每小时燃料损耗会大幅增加。因此,在电池备份逆变器系统中使用发电机不但可以获得高燃油效率,还可以解决噪声和燃料短缺问题,同时具有维护周期长的特点。下文会对OutBack GSLC175-AC-120/240交流耦合解决方案进行详细描述(包括一些图纸),下面列出的是交流耦合解决方案中所需的交流耦合组件以及OutBack预连线交流耦合Radian负荷中心。

● 50A DPST遥控断路器(ROCB;在负荷中心中占用三个CB空间);

● OBR-16-DIN(12VDC OutBack继电器);

● OBR-XX-DIN(48VDC OutBack继电器);

● DIN导轨硬件。

ROCB和两个OutBack继电器及两个AUX端口均已预连线。并网逆变器的L1和L2导体或其AC断线开关均位于与ROCB连接的双极断路器的开口端。如果安装了发电机,则双线式启动线会被连接至48V并网闭锁/Gen启动继电器,同时发电机的L1和L2与Gen输入总线相连,接地线和中性线与相应的总线相连。其它电网输入、逆变器输出和直流电池连接均如其他Radian负荷中心应用一样。

使用ROCB而不用固态继电器的优势包括:当系统因某些原因发生故障时,可手动断开并网逆变器。手动断开方式可以使用旁路连接,这样一来,当电池逆变器因为某些原因必须使用旁路连接时,电网中同样可以使用并网逆变器。使用固态继电器是无法达到这种效果的,此外,固态继电器还需要使用可提供频移方案的外部硬件。综上所述,ROCB是交流耦合实现的更简单且更划算的选择。

除了ROCB和继电器设备,MATE3用户界面还增加了交流耦合功能。该功能在现有的主动充电模式下使用温度补偿充电设定值,当电池电压比正常电池电压多0.4VDC时,会断开并网逆变器,起到保护电池的作用;而当电池电压比现有温度补偿充电设定值低0.4VDC时,会重连并网逆变器;如果并网逆变器能够提供大量剩余电量,则ROCB会以高达六分钟的频率运行。手动打开更多连接至临界负荷面板的负荷或使用分流负荷可以缩短运行周期,同时不会对ROCB造成影响,因为断路器和ROCB电机寿命超过10,000次。如果系统尺寸合适且临界负荷都处于运行中,则频繁的循环不会产生太大的影响而且不会损坏任何OutBack设备。



关键词:光伏太阳能电

评论


技术专区

关闭