新闻中心

EEPW首页>嵌入式系统>设计应用> 面向新兴微混合动力应用的先进电力电子解决方案

面向新兴微混合动力应用的先进电力电子解决方案

作者: 时间:2016-12-16 来源:网络 收藏


双电池技术的典型系统框图如图2所示。ICE运行时,电源开关Q1保持接通状态,这样负载就完全由主电池(Vbat)以及交流发电机供电。停车时,ICE关闭,只有Vbat为负载供电。引擎重新启动时,主电源Vbat还需要为启动电机提供高达1,000A的大瞬态电流,这会导致Vbat终端处的瞬态电压降至6V。为了防止电力电子电路由于电池发生瞬态事件而关闭,控制器会向Q1发送一个关闭信号,以便断开Vbat与负载的连接。同时,辅助电池(Vaux)会为负载供电,并保持电池电压。引擎成功重启且交流发电机重新开始工作之后,Q1接通,系统回到车辆运行模式。电源开关Q1和控制器还是电池反接保护电路的一部分。如果Vbat反接,Q1就会保持关闭状态,因为控制器没有发出信号 - 它通过终止反向电流路径来保护负载上的电路。


图2:微混合动力系统采用的双电池开关技术的系统框图。

另一种方法的配置类似,但是采用DC/DC升压转换器,而不是辅助电池,如图3所示。引擎重新启动时,旁路开关Q1会将主电池(Vbat)与负载断开,DC/DC转换器在启动过程中为负载提供升压。DC/DC升压转换器由1个电感、2个电源开关(Q2和Q3)和1个输出电容组成。Q2接通时,所有能量均储存在电感处 - 在此期间Q3断开,然后在Q2断开的时候,电感通过Q3将能量传递给负载。Q2的占空比取决于主电源上的电压和负载终端上的电压。PWM控制器在连续导通模式下控制这种同步DC-DC升压转换器以保持Vload。


图3:微混合动力系统采用的DC-DC升压转换器拓扑的系统框图。

国际整流器(IR)公司为微混合动力系统提供了汽车级系统解决方案。对于电池开关,表面贴装MOSFETAUIRF1324S-7P的最高导通电阻Rds(on)(最大值)低至1mΩ,而输出电流则高达240A。对于引脚封装,IR提供了采用传统TO-262封装的AUIRF1324L,其最高Rds(on)为1.65mΩ,并且可以利用采用新型WideLead TO-262封装的产品AUIRF1324WL将最高Rds(on)值降低20%左右。引线越宽意味着在MOSFET源极处安装内部接线的空间越多,从而降低了Rds(on),改善了封装内的线焊,进而将最大额定漏电流提高了30%左右。24V 1324系列的所有MOSFET均适于电池开关应用。IR还拥有Rds(on)低至1.25mΩ的40V汽车级MOSFET,适于DC/DC转换器应用。

IR汽车级高端MOSFET驱动器AUIR3240S专门为驱动起止应用的电池电源开关而设计,如图4所示。AUIR3240S是一款起止系统专用高集成度升压转换器,该系统在堵车时帮助汽车暂停引擎运行。该系统需要一个“板网稳定器”,通过电源开关在引擎启动时将辅助电力系统与起动器和主电池断开。AUIR3240S可以并行驱动几个MOSFET,能够实现极低的导通电阻(Rds(on))和低于50?A的电流消耗。新器件可以提供15V输出电压,而且输入电压范围很宽(4~36V)。AUIR3240S 还可以诊断输出电流,并具备适于稳定设计的热传感器接口。


图4:采用AUIR3240S和AUIRF1324S-7P的双电池系统解决方案。

微混合动力起止系统的光明前途取决于很多因素——如何降低启动电压降、如何将更多的电子器件整合到起动器中、新电池技术的发展方向如何……考虑到微混合动力系统的巨大潜力,电力电子供应商和汽车制造商一定会找到合适的解决办法。

上一页 1 2 下一页

评论


技术专区

关闭