新闻中心

EEPW首页>测试测量>设计应用> Labview波形显示控件

Labview波形显示控件

作者: 时间:2017-01-05 来源:网络 收藏

例二:该例的目的是学习使用“捆绑”打包函数来设置波形图的X轴刻度起始点和间隔。

  1. 新建一个VI,在前面板上放置一个波形图,取消X轴的自动调整,使产生的波形可以充满整个X轴刻度。同时放置两个数值输入控件,Xo控制X轴刻度的起始点,数据类型为I32,Delta X控制X轴刻度的水平间隔,数据类型为DBL。
  2. 切换到程序框图,放置一个高斯白噪声函数,它位于函数→信号处理→信号生成→高斯白噪声。如图:
  3. 添加“捆绑”函数,用定位工具拖动它的边框为3个输入端口,然后如图所示联系。

运行,结果如图:

例三:该例的目的是学习使用簇数组来显示不同长度的数据,并比较它与直接用二维数组显示的区别。

  1. 新建一个VI,在前面板上放置两个波形图,将它们标签内容分别改为“二维数组显示”和“簇数组显示”,标签字体大小设为18号。
  2. 打开程序框图,添加正弦波函数和方波函数,它们位于函数→信号处理→信号生成→正弦波,方波。分别给它们的采样端口赋值为150和200。
  3. 在数组函数中,选择创建数组函数,将正弦波和方波的输出合并为一个二维数组。在介绍数组时,已经得知当将两个不同长度的一维数组组成二维数组时,会自动在长度较短的一维数组后面添加0,使得它们的长度相同。所以在图形显示时会在正弦波形后面添加一些没有意义的0。
  4. 为了解决显示不同长度的一维数组,需要建立一个簇数组。方法是用“捆绑”函数将一维数组打包为一个簇,然后用创建数组函数建立一个簇数组,由于每组数据是一个簇,这样就可以解决显示不同长度的一维数组。

程序框图如图所示:

运行结果如图:

XY图

以上介绍的两种波形显示器:波形图表和波形图只能描绘样点均匀分布的单值函数变化曲线,因为它们的X轴只是表示时间先后,而且是单调均匀的。要想描绘Y与X的函数关系,就需要用XY图。XY图形就是通常意义上的笛卡尔图形,描绘XY图首先需要两个数组X和Y,分别对应于图形的X轴和Y轴,并且需要两个数组打包构成一个簇,X轴在上,Y轴在下。下面通过两个例子来说明XY图的一般用法。

XY图位于控件→新式→图形→XY图,如图:

例一:应用XY图显示里萨如图形。

首先简单介绍一下构成里萨如图形的原理,如果知道X和Y方向的两个数组分别按正弦规律变化(假设其数据点数,幅值和频率都相同),如果它们的相位相同,则应用XY图描绘出的里萨如图形是一条45°的斜线;当它们之间的相位差等于90°时为圆;大部分情况都是椭圆。

  1. 新建一个VI,在前面板上放置一个XY图,调整它的边框为合适大小,同时放置一个数值输入控件“相位差”。
  2. 切换到程序框图,添加两个正弦波函数放置到程序框图上。将“相位差”输入控件与第二个正弦波函数的“相位输入”端口相连,默认的相位是0。
  3. 在簇函数子模板上选择“捆绑”函数,将两个正弦信号打包为一个簇,第一个数组作为X轴的数据,第二个数组作为Y轴的数据,簇的输出与XY图相连。如图:

例二:用XY图描绘同心圆

  1. 新建一个VI,在前面板上放置一个XY图,使曲线图例显示两条曲线标识。
  2. 在程序框图上放置一个For循环,给计数端子赋值为360,添加正弦函数和余弦函数,它们位于函数→数学→基本与特殊函数→三角函数→正弦,余弦。
  3. 选择“捆绑”打包函数,将每次循环产生的一对正弦值和余弦值攒成一个簇,循环结束后将这360个簇组成一个簇函数。
  4. 因为XY图的显示机制决定了它的输入必须是簇,所以要再用一次“捆绑”打包函数将两个簇数组转换为簇,最后再用“创建数组”函数组成一个簇数组。程序框图如图:

运行结果如图:

Labview同时还为我们提供了另外一种XY图,就是Express XY图切换到程序框图时,我们会看到在程序框图上,它的使用比单纯的XY图简便,从图中我们也可以看到,它的输入端口是两个,输入既可以是单个的数值,也可以是数组,这里我们不再作详细的介绍。


上一页 1 2 下一页

评论


技术专区

关闭