新闻中心

EEPW首页>测试测量>设计应用> 铂电阻的温度测量系统设计

铂电阻的温度测量系统设计

作者: 时间:2017-01-09 来源:网络 收藏

  由于温度对集成运放参数影响不如对晶体管或场效应管参数影响显著,由集成运放构成的恒流源具有稳定性更好、恒流性能更高的优点。尤其在负载一端需要接地的场合,获得了广泛应用。所以采用图2所示的双运放恒流源。其中放大器UA1构成加法器,UA2构成跟随器,UA1、UA2均选用低噪声、低失调、高开环增益双极性运算放大器OP07。





  设图2中参考电阻Rref上下两端的电位分别Va和Vb,Va即为同相加法器UA1的输出,当取电阻R1=R2,R3=R4时,则Va=VREFx+Vb,故恒流源的输出电流就为:





  由此可见该双运放恒流源具有以下显著特点:

  1)负载可接地;2)当运放为双电源供电时,输出电流为双极性;3)恒定电流大小通过改变输入参考基准VREF或调整参考电阻Rref0的大小来实现,很容易得到稳定的小电流和补偿校准。

  由于电阻的失配,参考电阻Rref0的两端电压将会受到其驱动负载的端电压Vb的影响。同时由于是恒流源,Vb肯定会随负载的变化而变化,从而就会影响恒流源的稳定性。显然这对高精度的恒流源是不能接受的。所以R1,R2,R3,R4这4个电阻的选取原则是失配要尽量的小,且每对电阻的失配大小方向要一致。实际中,可以对大量同一批次的精密电阻进行筛选,选出其中阻值接近的4个电阻。

  2.2 信号调理电路

  信号调理电路如图3所示,放大器UA3对参考电阻Rref的端电压进行单位放大后得到差分放大器反向输入端信号,其值为





  放大器UA4对温度传感器Rt(Pt1000)的端电压放大2倍后得到差分放大器的正向输入端信号,其值为





  其中,电阻R5和R6的选择原则与之前恒流源分析中的比例电阻选择原则相同,即通过对大量普通标称电阻进行筛选,从中选取阻值最接近的。





  2.3 A/D转换电路

  A/D转换电路由一个集成A/D转换器AD7712完成,同时将利用其内部的PGA完成仪表放大器的差分放大功能。AD7712是适合低频测量的高精度A/D转换器。片内含有2个输入通道AIN1和AIN2,能将模拟信号转换成串行数据输出。利用AD7712实现数据转换采集的原理电路如图4所示,实际工作时需要对其进行配置。选用差分输入通道AIN1,输入信号极性为双极性。





  测量结果的误差主要来源于参考电阻Rref、Rref0的误差,以及差分放大倍数K和A/D转换器转换输出的误差。为了达到要求的测量精度,参考电阻Rref、Rref0将采用定制的UPR塑封金属箔电阻,这种电阻具有O.05%的初始精度,小于5 Ppm的温度稳定性。AD7712的非线性误差小于O.001 5%,增益温度稳定性小于2 Ppm,并且还可以通过单片机对AD7712进行校准来减小其非线性误差以及增益误差。



评论


技术专区

关闭