新闻中心

EEPW首页>嵌入式系统>设计应用> 基于FPGA的虚拟DPO设计方案

基于FPGA的虚拟DPO设计方案

作者: 时间:2017-01-12 来源:网络 收藏

本文引用地址://m.amcfsurvey.com/article/201701/337783.htm

  2.1总体框图

  根据上述分析,制定以下设计方案:该示波器采用FPGA架构,FPGA作为系统控制核心负责监控PC机上发送过来的按键命令并根据当前的工作状态发送相应的采集控制命令给采集模块,同时还控制着数字荧光处理模块生成的波形图像和控制菜单,另一方面,由于其高速的特点,用于实现高速数据采集系统以及数字荧光处理器。整体实现框图如图3所示。其中模数转换器、时钟电路和FPGA共同构成了示波器的采集系统,FPGA内部实现DPX模块,最后通过USB上传到PC机处理显示。

  图3 虚拟DPO组成框图

  2.2信号调理电路

  信号调理电路主要由衰减放大电路、耦合控制电路和直流偏置电路组成,由FPGA控制。

  衰减放大电路调整输入波形的幅度范围,把不同幅度的信号进行衰减或放大以适应屏幕的显示范围,便于观察和测量。

  耦合控制电路控制输入信号的耦合方式,分别为交流耦合和直流耦合,在直流耦合方式时,信号的所有分量(交流和直流)都被采集显示出来,而在交流耦合方式时,信号的直流分量被阻断,只有交流分量被采集显示出来。

  直流偏置电路给信号加入直流分量,可以控制信号在屏幕中上下移动。另外,示波器的输入阻抗和模拟带宽也由信号调理电路所决定。在本项目中,信号调理电路的输入阻抗为50欧姆和1M欧姆可选。模拟带宽为500MHz。

  2.3数据采集系统

  数据采集系统由到模数转换器(AnalogDigital Convertor, ADC)、时钟芯片和FPGA中相关采集控制模块组成。

  2.3.1模数转换

  本设计选用e2v公司的AT84AD001B模数转换器。其接口如图4所示。该ADC为并行比较结构,速度快,但功耗大。其将两路ADC集成在一个芯片中,每路ADC最高采样率达1GHz,量化精度八比特,另外该芯片还支持交织采样的功能,即同一芯片中的两路ADC同时采集同一路模拟信号,并且其采样时钟相位相反,将这两路ADC的抽样数据拼接起来可获得2GSPS的最高采样率。AT84AD001B的主要特性如下:

  ◇双路ADC,每通道采样率1GSPS,交织采样模式下可达2GSPS;

  ◇输出编码为格雷码和二进制编码可选,支持1:1和1:2复用输出;

  ◇支持模拟输入切换选择,采样时钟选择;

  ◇支持增益控制和零电平调节;

  ◇采样率1GSPS时误比特率不超过;

  ◇串行配置工作模式,源同步时钟数据输出;

  图4 模数转换器AT84AD001B接口框图

  2.3.2时钟电路

  在本项目中,采用了National Semiconductor公司的高精度时钟管理芯片LMK03033C.其时钟抖动的均方根值为500飞秒。该芯片内置低噪声锁相环并且支持8路时钟同步输出,支持串行配置。每路输出时钟都带有可编程的分频比、延迟调整和输出选择模块,最高输出时钟频率1GHz,且可在0 至2.25ns 的范围内调节输出延时,步进为150ps.该芯片为高速ADC采集数据提供了精确的采样时钟。接口如图5所示。

  图5时钟管理芯片接口图

  2.3.3采集控制和数据缓冲

  模数转换器输出的高速数字信号在采集控制模块的控制下写入数据缓冲区,之后进行数字荧光处理。如图6所示。对于高速数字信号的控制和缓冲一般采用高速数字电路实现。一种方案是采用专用集成电路(ASIC)实现高速控制和数据缓冲。但是,专用集成电路成本极高,而且不能修改,一般用于经过充分验证的,成熟的数字电路设计。另一种方案是采用高速FPGA。



关键词:FPGA虚拟DPO示波

评论


技术专区

关闭