新闻中心

EEPW首页>测试测量>设计应用> 用于射频和微波测试系统的DHBT IC 技术

用于射频和微波测试系统的DHBT IC 技术

作者: 时间:2017-02-27 来源:网络 收藏

一种新的工艺技术对于Agilent复杂且规模较小的生产其晶片成品率大都如此。造成晶片成品率损失的原因主要有程序错误、晶片破裂、工艺和/或仪器问题。我们的经验显示GaAsSb/InP双异质结双极晶体管DHBTs并不存在异于其它化合物半导体的特有失效机制和更低的可生产性。


所有晶片工艺环节都由具有自动处理晶片功能的设备完成,以最大限度的减小人为因素造成的片与片、批与批之间的差异。具体的工艺步骤需要不断调整输入参数(例如,每一次要根据测试得到的目标层厚度进行离线计算),数据被不断收集以使统计工艺控制软件进行编程来指导操作者操作。
V.可靠性
可靠性通过对分立的自对准1 × 3 µm² 漂移是主要的可靠性失效模式。利用测试得到的激活能Ea, 其值大约为1.02 eV, 外推得到Tj =)bHBTs进行高温寿命测试(HTOL)来确定,电流增益( 125 °C.温度下MTTFs 寿命超过106 的下半部显示双异质结双极晶体管结构(例如,InP集电区)可在VCE6以上。图03值始终保持在 b,这一标准保证了6作为失效标准同样示于图 %5漂移 b。以电流增益6集电区电流泄漏(位列第二的主要可靠性失效模式)示于图—漂移和基区 )b小时。电流增益( = 4.5 V 下保持高可靠性工作,这一电压值比InP衬底单异质结双极晶体管高出 2 3 V。

VI.电路性能
A.2 60 GHz 一比二静态分频器
静态分频器性能和芯片照片示于图7。双极晶体管HBT 用作静电放电保护。其输入灵敏度窗口非常宽,单端正弦波输入状态下一比二除法功能可在2GHz到60GHz范围内实现。输入和输出可采用差分和单端方式。90 mA时偏置电压为-3.4V。典型输出功率从低频时的. 0 dBm 到高频60GHz时的 3 dBm 。
B.差分限幅放大器
由50个晶体管组成的差分限幅放大器照片示于图8a。限幅放大器采用两级Cherry-Hooper,一级cascode和一对有几级发射极跟随器缓冲的差分输出结构,低频小信号差分增益大于32dB, 单端(S-E)输入电压窗口为± 700 mV 最大单端(S-E)输出幅度500 mVpp 。 放大器从+1 V 到 4.1 V电源消耗0.59 W功率。偏置端采用 双极晶体管HBT 进行静电放电保护。输入输出均有差分失调/直流监测以及common-mode pull-up 能力.
图8b 显示了典型的在片增益特性,低频S-E 增益26.8±0.5 dB , 3 dB 带宽46.8±0.4 GHz.。达到65 GHz时群

延时变化小于5 ps。典型 43 Gb/s 眼图输出信号如图8c 所示,其幅度为0.50 Vpp S E, 10%-90% 上升时间为9.2 ps, 总 RMS抖动378 fs。 295 fs RMS 抖动1 Vpp 差分PRBS 231-1 NRZ输入信号由以同样技术制作的半速retimer 提供。
C.线性相位检测器
这一电路在文献[18]中单独有详细介绍。它使用了超过200个最小尺寸的晶体管,并以HBT作为静电放电保护,3级互联,高值和低值电阻,电容,背面通孔。对于这样的复杂电路其在线成品率是合乎预期的。


上一页 1 2 下一页

评论


技术专区

关闭