新闻中心

EEPW首页>网络与存储>业界动态> 重回大众视线 揭秘嵌入式存储器的前世今生

重回大众视线 揭秘嵌入式存储器的前世今生

作者: 时间:2017-06-20 来源:半导体行业观察 收藏

  (2)磁性(MRAM)

本文引用地址://m.amcfsurvey.com/article/201706/360689.htm

  MRAM是利用材料的磁场随磁场的作用而改变的原理所制成。利用磁存储单元磁性隧道结(MTJ)的隧穿磁电阻效应来进行存储。

  如下图四所示,MTJ有三层,最上层为自由层,中间是隧道结,下面是固定层。自由层的磁场极化方向是可以改变的,而固定层的磁场方向固定不变。当自由层与固定层的磁场平行时,存储单元呈现低阻态;当磁场方向相反时,存储单元呈现高阻态。MRAM通过检测存储单元电阻的高低,来判断所存数据是0还是1。

重回大众视线 揭秘嵌入式存储器的前世今生

  图四 MJT结构示意图

  (3)相变(PRAM)

  PRAM的存储原理是利用某些薄膜合金的结构结构相变存储0和1的信息。通常这些合金具有两种稳定状态:具有低电阻的多晶状态和具有高电阻的无定形状态。PRAM应用硫系玻璃材料,利用硫族材料的电致相变特性,其在晶体和非晶体状态呈现不同的电阻特性。当被加热时呈晶体状,为1状态;当冷却为非晶体时,为0状态。通过改变流过该晶体的电流就可以实现这两种状态的转换。

重回大众视线 揭秘嵌入式存储器的前世今生

  图五 相变存储材料

  (4)阻变式(RRAM)

  RRAM的原理是通过特定的薄膜材料的电阻值在不同电压下呈现的电阻值不同来区分0和1的值。RRAM的存储单元具有简单的金属/阻变存储层/金属(MIM)三明治结构如图六所示。

重回大众视线 揭秘嵌入式存储器的前世今生

  图六 RRAM器件结构图

  哪种存储会是未来的选择?

  FRAM的读写速度主要取决于铁电材料的极化反转特性,根据目前理论极化反转速度可达到皮秒量级。

  MRAM利用磁性存储数据,容量成本低,具有低功耗、高速存取、无限次读写、抗辐射能力强等优点,在军事、航空航天、移动通讯等领域的应用有很大优势。

  PRAM被认为是FLASH和DRAM的替代者,读写速度是普通闪存的30倍,同时其擦写寿命也是闪存的10倍。PRAM的最大优点是高效能和低耗电。

  RRAM具有与CMOS工艺兼容性好、低功耗、易于随先进工艺微缩等优点受到广泛关注。总结这几种新式存储器优缺点如下表所示。

重回大众视线 揭秘嵌入式存储器的前世今生

  表一 几种存储器性能对比

  新型存储器挑战

  FRAM目前作为新型存储器的主要问题是铁电薄膜材料。未来发展需要解决的主要难题:一是采用3D结构缩小单元面积提高集成度;二是提高铁电薄膜特性。

  RRAM还是一项前沿的研究课题,目前还主要停留在实验室阶段。未来材料的寻找仍然是RRAM面临的主要问题。

  而台积电未来选择先生产的MRAM和PRAM也会遇到挑战。MRAM的主要问题在于其高昂的制造成本。其次MRAM依靠磁性存储材料,磁场会对周围的芯片产生怎样的影响需要仔细考虑。

  而PRAM的最大问题是成本和容量。目前PRAM的单位容量成本还是比NAND高不少。发热对于PRAM而言是个大问题,由于PRAM需要加热电阻式材料发生相变,随着工艺越来月先进,单元变得越来越精细,对于加热元件的控制要求也将越来越高,那发热带来的影响也将加大。发热和耗电可能会制约PRAM的进一步发展。

  嵌入式存储器未来

  嵌入式存储器具有大容量集成的优势,是SOC的重要组成部分,具有重要的创新性和实用性。何种嵌入式存储器将取得最终的成功,取决于多方面的因素:能否与标准CMOS工艺兼容,在不断增加复杂性的工艺步骤的基础上,实现大容量的片上集成,从而提高其性价比;能否随着工艺的发展缩小尺寸,解决超深亚微米工艺的延续性和扩展性问题,这是所有采用电容结构存储信息的存储器面对的共同挑战;能否满足片上其他高速逻辑的带宽需要,构成带宽均衡、稳定简洁的集成系统;准确的市场定位,保持量产。

  总而言之每项技术的发展都有其机会与挑战。而无惧挑战勇于创新的企业最终将赢得市场。


上一页 1 2 下一页

关键词:存储器物联网

评论


相关推荐

技术专区

关闭