关 闭

新闻中心

EEPW首页>工控自动化>设计应用> 基于ZigBee技术的机房监控系统

基于ZigBee技术的机房监控系统

作者: 时间:2010-08-26 来源:网络 收藏


2.1 传感器模块
传感器模块从网络的角度看,为一个RFD节点,通过2节5号电池供电。按照需要探测物理量的不同,各传感器的硬件设计分述如下:
1)温度传感器 CC2430内部集成有一个温度传感器,其基本工作原理:片上温感部分将温度转换为模拟电压信号,其幅度范围是0.648(-40℃)~1.039 V(+120℃),之后经过12位A/D转换为数字信号,再除以一个温度系数,则可得到当前温度值。
2)湿度传感器探头 采用瑞士森斯瑞(Sensirion)公司推出的SHTl5超小型、自校准、多功能式智能传感器来测量相对湿度,SHTl5型传感器是单片、多用途的智能传感器,其内部不仅包含基于湿敏电容器的微型相对湿度传感器,而且还有14位的A/D转换器和双线串行接口,能输出经过校准的相对湿度。该智能传感器的相对湿度测量范围为0~100%,分辨率达0.03%,最高精度为±2%RH,电源电压范围2.5~5.5V,响应时间,小于3s。
3)烟感探头 烟感探头的基本工作原理:当烟雾进入报警器室时,将隔断或阻止红外线的互通,红外线的发射管收不到对方发来的光,光参数变化,经处理电路进行处理后,再转换成低电平,并触发报警。
2.2 空调控制节点设计
空调控制器节点完成从网络接收自主控计算机发来的空调启、停命令并将其转换成对应的遥控器红外控制命令。从网络的角度看,空调控制器节点仅是一个RFD设备,主要是接收ZigBee数据,也由CC2430完成。其需要完成的另外一个任务就是通过红外通道,模拟空调的遥控器完成控制空调的启、停。在安装配置时,通过“红外学习口”对机房内所装空调的遥控器红外命令进行学习,并将其存储在EEPROM中。正常工作时,当接收到从ZigBee传输来的空调控制命令时,将其转换为红外发送命令,从EEPROM读取数据,按照这些数据规定的脉宽参数控制红外发射管发送红外线,进而直接控制空调。由于红外控制命令的学习和发送会占用资源操作,如果其也由CC2430控制,将会加重CC2430负载,影响正常的ZigBee通信功能。因此使用51系列单片机AT89S52完成,CC2430与AT89S52之间通过串口来交换数据。这样可以在不改装空调的情况下,通过简单的红外学习操作即可控制任意型号的空调,简化了的安装使用,同时也大大提高了系统的可靠性。空调控制节点的设计框架如图3所示。


2.3 ZigBee中转设备设计
该中转设备的功能是完成以太网与ZigBee网络之间的双向数据交换,有2种实现方案。
2.3.1 CC2430+PC机
CC2430+PC机实现方案原理:CC2430负责ZigBee网络的数据收发和转存,PC机负责以太网数据的收发,二者之间通过RS-232交换数据。目前普通PC机的RS-232串口的波特率最高可达到115 200,而ZigBee的理论带宽可达250 kb,二者速率大致在一个数量级,考虑到该系统设计所传输的大多是控制命令,数据流量不大,所以二者可以匹配使用。该实现方案研发周期短,可快速成型,且PC机资源丰富,可预留许多资源、功能供系统后续扩展,但成本较高,功耗较大。
2.3.2 CC2430+ARM(S3C44BOX)
与CC2430+PC机实现方案类似,CC2430+ARM(S3C44BOX)实现方案只是用以ARM为核心的嵌入式系统代替PC机,二者通过UART交换数据。采用三星公司的ARM7系列器件S3C44BOX作为主控制器,其主要功能和特点如下:1)以太网接口,采用10 M以太网控制器RTL8019,提供标准RJ45插座;2)2路UART接口,波特率达115200;3)LCD接口,可接1600×1600以下分辨率的单色或256色STN/DSTN型各种LCD屏;4)IDE接口,可挂接硬盘;4)运行μcLinux操作系统。该实现方案结构紧凑,成本较低,同时ARM为低功耗器件,所以整个模块的功耗很低。
通过对上述两种实现方案的比较,并考虑到成本和功耗的问题,因此这里选用第2种方案进行设计。

3 系统软件设计
3.1 ZigBee软件设计

为缩短研发者的开发时间和减小开发难度,TI公司在提供器件的同时,另外还免费提供实现ZigBee协议的软件——Z-Stack,此软件不仅实现了ZigBee协议栈,并在此基础上扩充成了一个微型的操作系统,其主要内容包括:1)硬件抽象层HAL,处理键盘输入,LCD输出,UART输入、输出等;2)操作系统抽象层(OSAL);3)ZigBee协议栈、IEEE 802.15.4 MAC层;4)用户层应用程序;5)监看测试程序,通过串口和:PC机上的测试工具通讯。



评论


相关推荐

技术专区

关闭