新闻中心

EEPW首页>模拟技术>设计应用> 嵌入式系统结构与协同性探讨

嵌入式系统结构与协同性探讨

作者: 时间:2013-12-04 来源:网络 收藏
arial; WHITE-SPACE: normal; ORPHANS: 2; LETTER-SPACING: normal; COLOR: rgb(0,0,0); WORD-SPACING: 0px; PADDING-TOP: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px">  图 3. 系统底层软件结构模型

2.2 基于ARM-μCLinux 系统bootloader 设计

  在模型以及设计流程的基础上,下面通过实例说明bootloader 的主要设计过程。

  基于ARM-μCLinux系统的启动引导过程:通过串口更新系统软件平台,完成启动、初始化、操作系统内核的固化和引导等。硬件平台由内嵌ARM10 的处理器、存储器2MBFlash 和16MBSDRAM、串口以及以太网口组成。软件平台组成:系统引导程序、操作系统内核、文件系统。采用Flash 存储bootloader、内核等,直接访问内核所在地址区间的首地址。

  2.3 μCLinux 内核的加载

  系统采用μCLinux 自带的引导程序加载内核,用自举模式和内核启动模式相互切换;同时,切换到内核启动模式,自动安全地启动系统。针对ARM7TDMI 的无MMU 特性,采用修改后的μCLinux 内核引导程序加载操作系统和初始化环境,解决内核加载的地址重映射问题和操作系统的内存管理问题。

  2.4 WinCE 系统下BootLoader

  完成定制WinCE 的加载主要工作是编写启动加载程序bootloader 和板级支持包BSP。Bootloader 涉及到基本的硬件操作,如CPU 的结构、指令等,同时涉及以太网下载协议TFTP 和映像文件格式。Bootloader支持命令输入的方式,不用人工干预加载WinCE,其主控部分通过串口来接收用户的命令。

  2.5 系统板级支持包BSP

  由于硬件环境、Bootloader 映射范围以及二次开发等原因,系统启动加载程序Bootloader 不能把经过裁剪的OS 直接引导进入硬件环境,需要建立BSP 文件,如VxWorks 的BSP 和Linux 的BSP 相对于某一CPU 来说尽管实现的功能一样,写法和接口定义可以完全不同。BSP 的结构与内容差异性较大,依据不同的系统和应用环境,应设计建立合理、稳定的BSP 内核。

  2.6 交叉融合

  在分析过程、任务划分以及系统的基础上,对系统底层软件设计应考虑Bootloader、BSP、接口以及应用程序交叉与融合。应用BSP 组成灵活性,设计充分考虑软硬件协同。接口驱动程序,如网络驱动、串口驱动和系统下载调试、部分应用程序可添加到BSP 中,从的角度是,简化软件层次和硬件尤其是存贮体系结构,当操作系统运行于硬件相对固定的系统,BSP 也相对固定,不需要做任何改动,建立独立的应用程序包。如果BSP 中的应用程序不断升级,将对系统稳定性造成影响。

  图 4 表征了系统三个软件环节的结构变化,Bootloader、BSP、接口驱动程序以及部分应用程序将产生融合与交叉。对于一次开发功能强大的嵌入式系统,应充分利用嵌入式处理器供应商提供的Bootloader,使建立BSP 的过程变得相对容易。

嵌入式系统结构与协同性探讨

linux操作系统文章专题:linux操作系统详解(linux不再难懂)


关键词:嵌入式系统结构协同性

评论


相关推荐

技术专区

关闭