新闻中心

EEPW首页>模拟技术>设计应用> MEMS替代石英方案 SiTime插旗急攻高端战场

MEMS替代石英方案 SiTime插旗急攻高端战场

作者: 时间:2013-11-19 来源:网络 收藏
x; PADDING-LEFT: 0px; PADDING-RIGHT: 0px; FONT: 14px/25px 宋体, arial; WHITE-SPACE: normal; ORPHANS: 2; LETTER-SPACING: normal; COLOR: rgb(0,0,0); WORD-SPACING: 0px; PADDING-TOP: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px">  惯性感测器在工业中用作辅助导航元件已经相当广泛,通常惯性感测器与GPS等其他导航设备一起使用。当GPS连结不可靠时,惯性导航可利用航位推算技术强化。

  除最简单的导航之外,多数解决方案都会依赖多种类型的感测器,在所有条件下提供所需的精度和性能。GPS、光学和磁性检测技术已广为认知,相关产品也很丰富,然而,每种技术都有其不足之处,即使一起使用,互相之间也不能完全补偿彼此的不精确性。惯性感测器则有可能完全补偿感测器的不精确性,因为它不存在上述干扰,且不需要外部基础结构:无需卫星、磁场或相机,只需惯性。表2列出主要的导航感测器技术及其优缺点。

MEMS替代石英方案 SiTime插旗急攻高端战场

  就像车辆导航设备会发生GPS遮挡问题一样,医疗系统所用的光学导航技术也会遇到视线遮挡问题。发生光学遮挡时,惯性感测器可以执行航位推算,从而通过冗余检测增强系统的可靠性。

  符合表2所列原则的一个医疗应用是在手术室使用惯性感测器,使人工膝关节或髋关节能够与病人独特的骨骼结构更精确地对准。本例的目标是让植入体与患者自然轴的对准误差小于1度。95%以上的全膝关节置换(TKA)手术,采用机械对准方法,它所产生的典型误差为3度或更大。

  使用光学对准的电脑辅助方法已开始取代一些机械程式,但可能由于设备开销较大,推广过程缓慢。无论使用机械对准还是光学对准,这些手术中约30%都会有未对准的情况(定义为3度以上的误差),使病人感觉不舒服,常常须要进行额外的手术。降低对准误差的可能好处,包括缩短手术时间、增强病人舒适感及使关节置换效果更持久。

  完整多轴惯性测量单元(IMU)形式的惯性感测器,已证明能够显著提高TKA手术的精度。基于的惯性感测单元包含所需的全部检测功能,包括三个线性感测器和三个旋转感测器,可取代基于机械和光学的对准技术。该元件利用多种类型的感测器和嵌入式处理来动态校正感测器漂移,如陀螺仪的线性加速度偏移、线性和旋转检测的温度漂移等。通过标准四线串列周边介面(SPI),可以与这个相对复杂的精密感测器套件轻松连接。

惯性感测器可靠度高(汽车行业20年的应用历史证明此点),它在手机和视频游戏中的成功应用,说明它极具吸引力。然而,不同应用对性能的要求大不相同,适合游戏的元件并不能解决本文所述的高性能导航问题。对于导航,重要的MEMS性能指标是偏置漂移、振动影响、灵敏度和杂讯。精密工业和医疗导航所需的性能水准,通常比消费电子设备所用MEMS感测器的性能水准高出一个数量级。表3列出有助于挑选感测器的一般系统考虑。

  大多数系统都会整合某种形式的卡尔曼滤波器,以便有效合并多种类型的感测器。卡尔曼滤波器将系统动力学模型、感测器相对精度和其他特定应用的控制输入纳入考虑,有效确定最切合实际的运动情况。高精度惯性感测器(低杂讯、低漂移、相对温度/时间/振动/电源变化保持稳定)可降低卡尔曼滤波器的复杂度,减少所需冗余感测器的数量,以及减少对容许系统工作方案的限制条件数量。

医疗应用复杂度高MEMS技术持续演进

  虽然感测器已实现各种各样的医疗应用,从相对简单的运动捕捉到复杂的运动分析,但医用感测器的高性能要求提出复杂且涉及到大量计算的设计挑战。所幸,解决这些新一代医疗挑战所需的许多原理均基于经工业导航应用验证的方法,包括感测器融合和处理技术。在医疗导航领域,运动的复杂性以及精度和可靠性要求,将推动多处理器、附加感测器后处理、复杂演算法、复杂测试和补偿方案的发展。

  在消费应用强烈追求小尺寸、低功耗、多轴惯性感测器的同时,某些开发人员同样重视能够在各种环境条件下,稳定可靠的高精度、低功耗、高性能感测器。与现有测量和检测技术相比,这些惯性MEMS元件在精度、尺寸、功耗、冗余度和可及性能均有优势。


上一页 1 2 下一页

关键词:MEMS高端战场

评论


相关推荐

技术专区

关闭