新闻中心

EEPW首页>模拟技术>设计应用> 何时应对宽能带隙材料时代

何时应对宽能带隙材料时代

作者: 时间:2012-12-21 来源:网络 收藏
够使层厚达到数微米,足够满足处理600V电压的要求,而没有过度的翘曲和变形。由于失配引起的不可避免的断层通常在109/cm2的范围内,需要给予抑制,以避免导电硅基层的泄漏,重要的是在薄膜中加入特别的杂质,以控制泄漏电流以及以及体电荷陷落。表面电荷和体电荷的陷落会引起导通电压的增加以及阻断电压的不稳定。幸运的是,最近报道在解决这些不稳定性方面已经取得了很大的进步。

氮化镓器件

  从理论上讲,氮化镓垂直器件在传导率方面优于碳化硅器件。这一点常用明确的Rdson对比额定BV图形来表示。问题在于缺乏具有合 理的成本和直径的均匀的氮化镓基层。因此,几乎所有的努力都放在了横向高电子迁移率晶体管(HEMT)上面,这些晶体管并未延续垂直器件的思路。这些器件 的性能取决于减小特征尺寸、2维电子气(2DEG)接触阻抗以及漏极漂移长度。这意味要获取低阻抗,高表面电场是不可避免的,并且这些器件不能承受很大的 雪崩电流。这些器件必须采取保守设计的方式,以确保瞬变电压值不会达到实际器件的击穿电压。高电子迁移率晶体管是带有漏肖特基栅极的常开器件,所以,对于 高电压一般采用一种绝缘栅极结构和常闭器件设计中的一种创新方法。

  碳化硅器件成功的关键是加快了解成本和材料缺陷方面的知识,开发基底和外延生产能力,并转换至150mm晶圆尺寸,以便使用广泛的晶圆生产能力。预计在今 后2至3年将会出现600V至1700V以及电压更高的商用器件。氮化镓器件成功的关键在于提高150mm至200mm晶圆的产量以及降低MOCVD工艺 的成本,采用能够承受高工作电压和表面电场应力的器件和材料设计。这在100V至600V器件的开发中已经开始实施,预计在未来2至3年这些器件的产量会 快速攀升。

  硅器件将来能够承受其他技术的冲击吗?回答是肯定的!凭借数十年的可靠性验证和现场使用,以及具有成本效益的高度成熟制造设施,在未来数年中,IGBT、 SuperFET® MOSFET以及STEALTH™整流器将会满足600V至1200V市场需求。屏蔽栅PowerTrench® 硅器件仍然是25V至150V应用的首选器件。随着系统设计人员学习使用带隙器件的高频能力,这些器件在系统性能、尺寸以及成本方面的优势将会显现出 来,并在2020年前乃至其后十年中逐步推动该产业的转变,实现带隙器件的普遍使用。


上一页 1 2 下一页

关键词:宽能带隙材料

评论


技术专区

关闭