新闻中心

EEPW首页>模拟技术>设计应用> 锂离子电池保护电路的原理和特性要求

锂离子电池保护电路的原理和特性要求

作者: 时间:2012-11-09 来源:网络 收藏
GIN: 20px 0px 0px; WORD-SPACING: 0px; FONT: 14px/25px 宋体, arial; TEXT-TRANSFORM: none; COLOR: rgb(0,0,0); TEXT-INDENT: 0px; PADDING-TOP: 0px; WHITE-SPACE: normal; LETTER-SPACING: normal; BACKGROUND-COLOR: rgb(255,255,255); orphans: 2; widows: 2; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px">  V- = I × Rds(on) × 2(V- 为过电流检测电压,I 为放电电流)

  假设 V- = 0.2V,Rds(on) = 25mΩ,则保护电流的大小为 I = 4A

  同样地,过电流检测也必须设有延迟时间以防有突发电流流入时产生误动作。

  通常在过电流产生后,若能去除过电流因素(例如马上与负载脱离),将会恢复其正常状态,可以再进行正常的充放电动作。

  四、锂IC的新功能

  除了上述的锂IC功能之外,下面这些新的功能同样值得关注:

  1.充电时的过电流保护

  当连接充电器进行充电时突然产生过电流(如充电器损坏),电路立即进行过电流检测,此时Cout将由高转为低,功率MOSFET由开转为切断,实现保护功能。

  V- = I × Rds(on) × 2

  (I 是充电电流;Vdet4,过电流检测电压,Vdet4 为 -0.1V)

  2.过度充电时的锁定模式

  通常保护IC在过度充电保护时将经过一段延迟时间,然后就会将功率MOSFET切断以达到保护的目的,当锂电池电压一直下降到解除点(过度充电滞后电压)时就会恢复,此时又会继续充电→保护→放电→充电→放电。这种状态的安全性问题将无法获得有效解决,锂电池将一直重复着充电→放电→充电→放电的动作,功率MOSFET的栅极将反复地处于高低电压交替状态,这样可能会使MOSFET变热,还会降低电池寿命,因此锁定模式很重要。假如锂电保护电路在检测到过度充电保护时有锁定模式,MOSFET将不会变热,且安全性相对提高很多。

  在过度充电保护之后,只要充电器连接在电池包上,此时将进入过充锁定模式。此时,即使锂电池电压下降也不会产生再充电的情形,将充电器移除并连接负载即可恢复充放电的状态。

  3.减少保护电路组件尺寸

  将过度充电和短路保护用的延迟电容器整合在到保护IC里面,以减少保护电路组件尺寸。

  五、对保护IC性能的要求

  1.过度充电保护的高精密度化

  当电池有过度充电状态时,为防止因温度上升所导致的内压上升,须截止充电状态。保护IC将检测电池电压,当检测到过度充电时,则过度充电检测的功率MOSFET使之切断而截止充电。此时应注意的是过度充电的检测电压的高精密度化,在电池充电时,使电池充电到饱满的状态是使用者很关心的问题,同时兼顾到安全性问题,因此需要在达到容许电压时截止充电状态。要同时符合这两个条件,必须有高精密度的检测器,目前检测器的精密度为25mV,该精密度将有待于进一步提高。



关键词:锂离子电池保护

评论


相关推荐

技术专区

关闭