新闻中心

EEPW首页>模拟技术>设计应用> ARM的未来低功耗系统设计发展之路

ARM的未来低功耗系统设计发展之路

作者: 时间:2012-09-29 来源:网络 收藏
5,255); TEXT-ALIGN: left; orphans: 2; widows: 2; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px"> 大部分系统都有一些不需要高速运行的任务,只需要完成它们就可以了。一般会由于某一原因而保持这些任务处于工作状态,因此,系统不能简单的接通,让它们工作,然后,再次关断。有针对减小这些任务的泄漏功耗而采取的节能方法。

展示了当模块工作在较长的时钟周期中时,您可以在时钟转换期间关掉组合逻辑电源。如果时序正确,保持时间之后关掉供电,在逻辑需要传播新状态时再恢复供电,这样不会改变寄存器中的序列。根据某些信息来源,这一方法能够把泄漏减小25倍。由于逻辑电源网络实际上成为自己的信号通路,因此,这一“子时钟电源选通”(图2 )方法会增加一些晶体管,增大动态功耗,当然也会增加时序收敛的复杂度。但是,在电路中降低了25倍,这的确是非常重要的方法。

图2.极技术,例如,子时钟电源选通,近/亚阈值工作等,实现了拉低曲线的新方法。

这就带来了怎样降低寄存器本身泄漏的问题,这涉及到在时钟转换期间无法进行电源选通的其他电路。Muller说,研究了VDD非常靠近甚至低于Vt。近阈值和亚阈值工作都能够使电路保持在低速工作,同时有效降低泄漏。但是都带来了复杂的问题。

还没有很好的定义什么是近阈值工作。在传统的MOSFET模型中,晶体管有三种不同的工作模式。饱和模式,此时,VDD和VSS明显大于Vt。对于逻辑,这是正常的ON模式。亚阈值模式,此时,VGS低于Vt,这是传统的OFF模式,简单模型表示出只有一些很小的泄漏电流从源极流向漏极。在这两种模式之间是第三种模式,通常称为线性或者欧姆模式,VGS接近Vt。在这种模式中,假设MOSFET的行为与栅极压控电阻相似。

采用目前的短沟道技术,线性和饱和模式之间的区别并不明显。IMEC业务开发执行副总裁Ludo Deferm评论说:“数字设计人员希望能够精确的把阈值电压控制在0.3至0.35 V之间,而工作点正好在这之上。在这一点,短沟道MOSFET已经处于电子速度饱和,行为表现与其饱和特性非常接近,但是电流明显降低。较低的电流有可能会使逻辑速度降低几个数量级。虽然速度慢了,但是,传统的逻辑电路能够继续保持工作,与较高电压时相比,每次操作消耗的能量降低了几个数量级。总之,在这种模式中,可以在很长一段时间周期内或者在循环之间保持寄存器的状态不变。这种近阈值工作也可以用于连续工作系统,以节省能耗。Muller描述了一种自足的堆栈管芯装配,它包括太阳能电池、普通电池,工作在快速运行和电源关断模式下的DSP管芯,以及近阈值CPU管芯,所有这些都在一个有源基底上。

近阈值工作会遇到很多难题。很明显,应用程序必须要容忍性能的大幅度降低。而Deferm提醒说,还有其他引起很大变数的问题。工艺、供电电压、温度变化等都会对晶体管行为产生很大的影响。为减小这些变化的影响,芯片设计人员不仅要依靠其代工线工程师来保持Vt不变,而且,还需要把管芯使用点电压稳压器靠近低电压电路放置,以减小VDD的变化和瞬变。

设计人员如果希望更接近Vt,则需要采用更极端的方法。很多研究人员都建议逻辑电路设计使用差分信号和穿通晶体管逻辑,以及用作探测器的传感放大器,这些都有助于减小各种变化的影响。但是这类技术的应用毕竟是有限的。IMEC首席科学家Praveen Raghavan指出:“您可以通过定制设计流程,在隔离模块中使用低电压差分技术。但是,芯片设计团队仍然需要传统的时序分析方法。工具则无法支持这类电路。”

亚阈值工作

Muller说,在低电压上的兴趣并不会止于Vt。在亚阈值区,MOSFET源极至漏极电流继续响应VGS。但是,这一电流现在非常小——泄漏电流,其响应会非常慢。而且,在某些情况下,特别是在必须保持数据同时要节省能耗的系统中,可以让VDD低于Vt来工作。对于逻辑设计人员,这是尚未开发的领域,只有很少的专业模拟专家有所涉及。

Raghavan说:“对于正常的体晶体管,通过亚阈值工作,可以让能耗降低十倍。但是性能降低了100到1000倍,工艺变化的影响会非常大。”而finFET的出现会有所改变,Raghavan建议,“我们希望finFET能够让我们更好的控制Vt,亚阈值工作对性能造成的影响会小很多,可能只有50倍。”亚阈值工作虽然可能一直需要进行定制设计,但是至少会有较为广泛的应用。

亚时钟电源选通和近阈值或者亚阈值工作为CMOS电路超低泄漏工作开辟了新



评论


相关推荐

技术专区

关闭