新闻中心

EEPW首页>模拟技术>设计应用> 1.车载逆变电源设计实例

1.车载逆变电源设计实例

作者: 时间:2012-07-16 来源:网络 收藏
al; LETTER-SPACING: normal; BACKGROUND-COLOR: rgb(255,255,255); orphans: 2; widows: 2; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px">  变压器原边的开关管S1和S2各采用IRF32055只并联,之所以并联,主要是因为在接入负载时,变压器原边的电流相对较大,并联可以分流,可有效地减少开关管的功耗,不至于造成损坏PWM控制电路芯片SG3524,是一种电压型开关电源集成控制器,具有输出限流,开关频率可调,误差放大,脉宽调制比较器和关断电路,其产生PWM方波所需的外围线路很简单。当脚11与脚14并联使用时,输出脉冲的占空比为0~95%,脉冲频率等于振荡器频率的1/2。当脚10(关断端)加高电平时,可实现对输出脉冲的封锁,与外电路适当连接,则可以实现欠压、过流保护功能。利用SG3524内部自带的运算放大器调节其输出的驱动波形的占空比D,使D>50%,然后经过CD4011反向后,得到对管的驱动波形的D50%,这样可以保证两组开关管驱动时,有共同的死区时间

  3、 DC/AC变换

  如图3所示,DC/AC变换采用单相输出,全桥逆变形式,为减小的体积,降低成本,输出使用工频LC滤波。由4个IRF740构成桥式逆变电路,IRF740最高耐压400V,电流10A,功耗125W,利用半桥驱动器IR2110提供驱动信号,其输入波形由SG3524提供,同理可调节该SG3524的输出驱动波形的D50%,保证逆变的驱动方波有共同的死区时间。

DC/AC变换

IR2110的内部结构和工作原理框图

  IR2110是IR公司生产的大功率MOSFET和IGBT专用驱动集成电路,可以实现对MOSFET和IGBT的最优驱动,同时还具有快速完整的保护功能,因而它可以提高控制系统的可靠性,减少电路的复杂程度。

  IR2110的内部结构和工作原理框图如图4所示。图中HIN和LIN为逆变桥中同一桥臂上下两个功率MOS的驱动脉冲信号输入端。SD为保护信号输入端,当该脚接高电平时,IR2110的输出信号全被封锁,其对应的输出端恒为低电平;而当该脚接低电平时,IR2110的输出信号跟随HIN和LIN而变化,在实际电路里,该端接用户的保护电路的输出。HO和LO是两路驱动信号输出端,驱动同一桥臂的MOSFET

  IR2110的自举电容选择不好,容易造成芯片损坏或不能正常工作。VB和VS之间的电容为自举电容。自举电容电压达到8.3V以上,才能够正常工作,要么采用小容量电容,以提高充电电压,要么直接在VB和VS之间提供10~20V的隔离电源,本电路采用了1μF的自举电容。 为了减少输出谐波,逆变器DC/AC部分一般都采用双极性调制,即逆变桥的对管是高频互补通和关断的。

  逆变桥部分,采用IGBT作为功率开关管。由于IGBT寄生电容和线路寄生电感的存在,同一桥臂的开关管在开关工作时相互会产生干扰,这种干扰主要体现在开关管门极上。以上管开通对下管门极产生的干扰为例,实际驱动电路及其等效电路如图3所示。实际电路中,IR2110的输出推挽电路,这个电压尖刺幅值随母线电压VBUS和负载电流的增大而增大,可能达到足以导致T2瞬间误导通的幅值,这时桥臂就会形成直通,造成电路烧毁。

  同样地,当T2开通时,T1的门极也会有电压尖刺产生。带有门极关断箝位电路的驱动电路通过减小RS和改善电路布线可以使这个电压尖刺有所降低,但均不能达到可靠防止桥臂直通的要求。门极关断箝位电路针对前面的分析,本文将提出一种门极关断箝位电路,通过在开关管驱动电路中附加这种电路,可以有效地降低上述门极尖刺。门极关断箝位电路由MOSFET管MC1和MC2,MC1门极下拉电阻RC1和MC2门极上拉电阻RC2组成。实际上该电路是由MOSFET构成的两级反相器。当MC1门极为高电平时,MC1导通,MC2因门极为低电平而关断,不影响功率开关管的正常导通;当MC1门极为低电平时,MC1关断,MC2因门极为高电平而饱和导通,从而在功率开关管的门极形成了一个极低阻抗



关键词:车载逆变电源

评论


相关推荐

技术专区

关闭