新闻中心

EEPW首页>模拟技术>设计应用> 半导体晶体管电路设计须知(一)

半导体晶体管电路设计须知(一)

作者: 时间:2012-03-26 来源:网络 收藏
13003E的集电极电压电流波形进行了测试, 分析了开关工作的各个阶段的损耗, 结果如表2所示, tON表示导通延时, toff表示关断延时, Tw 为开关周期, P in为充电器输入功率, P los STot为开关总的损耗, P loss tot /P in为开关损耗占系统输入功率的百分比。

半导体晶体管电路设计须知(一)

  表2 四组APT13003E在充电器系统中各个阶段的损耗分析

  从表2中可以看出, 在85 V 交流输入电压下,辐照之后的APT13003E 比未辐照的APT13003E 的关断延时有了大幅的减小, 因此关断损耗大幅的减小, 如辐照为10 kGy的管子的关断损耗减小为未辐照管子的1 /6; 导通延时有所增加, 但增加的幅度较小, 导通损耗有较小的增加; 饱和压降随辐照剂量的增加而增加, 因此通态损耗随辐照剂量的增加而增加。开通损耗、通态损耗的增加与关断损耗的减小是一对矛盾, 因此必须选择合适的辐照剂量, 才能使开关晶体管总的损耗最小。

  而在264 V输入电压下, 辐照后关断损耗只有较小幅度的减小, 因此总损耗基本不变, 系统效率也没有改善。如图4 和图5 分别为未经辐照的APT13003E 在85 V 和264 V输入电压下基极电流、集电极电压和电流的波形。比较图4和图5中可以看出, 在264 V 输入电压条件下导通时集电极电流的尖峰比起85 V 时要大很多, 这是因为导通时变压器寄生电容充电电压增大了2. 1倍, 但充电时间只增加了约0. 6倍, 所以充电电流就会大大增加, 这也导致了APT13003E 的导通损耗由85 V 下的0. 016W 变为264 V下的0. 183W, 此时导通损耗占了总的损耗的大部分, 而电子辐照对导通损耗并没有改善; 另一方面, 在APT13003E 关断时, 集电极电压并没有直接降到0, 而是先经过一个近100 ns的电流“ 尾巴”之后, 才又下降到0, 此时集电极电压已经比较大了, 因此这个电流“尾巴”所造成的损耗占关断损耗的比例较大。产生这个“尾巴”的原因是, 关断开关晶体管时, 由于管子的基区比较薄, 过大的基极电流引起较大的基区电位差, 使VBE 为负的情况下发射结局部正向偏置, 集电极电流迟迟降不下来。

半导体晶体管电路设计须知(一)

  图4 85 V交流输入电压下APT13003E基极电流、集电极电压、集电极电流波形图

半导体晶体管电路设计须知(一)

  图5 264 V 交流输入电压下APT13003E 基极电流、集电极电压、集电极电流波形图

  而经过电子辐照后的APT13003E, 其集电极电流的这个“尾巴”并没有减小, 所以造成了辐照后的APT13003E 的关断损耗并没有大幅的降低, 因此系统的效率并没有改善。我们一方面可以优化基极驱动电路, 使关断初始时基极反向电流不至于太大, 避免产生电流“尾巴”, 而关断的最后阶段突增反向基极电流, 则在高输入电压下, 系统的效率就会有所提高; 另一方面, 通过分段绕制、使用介电常数小的绝缘材料、适当增加绝缘层厚度和静电屏蔽等方法, 降低变压器的寄生电容, 降低开关晶体管的导通损耗,系统效率也将提高。

电子镇流器相关文章:电子镇流器工作原理




关键词:半导体晶体管

评论


相关推荐

技术专区

关闭