新闻中心

EEPW首页>模拟技术>设计应用> 差分示波器测量

差分示波器测量

作者: 时间:2012-01-29 来源:网络 收藏
失为一个好方法。
最大共模转换速率适用于某些放大器和大多数隔离器。这项指标常令人困惑但却非常重要。一部分困惑缘自仪器制造商之间缺少标准的定义。而且不同的放大器和隔离器在超出最大共模转换速率时的表现也不尽相同。最大共模转换速率实质上是对CMRR 指标的补充。本指标的单位一般为kV/μs。
有些类型的放大器也像其他放大器一样,在超出小信号的带宽指标之前就超出了大信号转换速率的限制。当放大器一端或两端被驱动到转换速率的极限时,共模抑制就会急剧降低。与CMRR 不同的是,最大转换速率并不意味着输出端共模馈通量的增加。一旦超过了最大共模转换速率,一切均无从谈起- 输出就像被钳位在一个电源汇流条上。
但是对于隔离器来说,这种影响表现得为更加渐进- 就像差分放大器中的CMR一样。随着共模转换速率的增加(与频率相对),有更多的共模成分“馈通”到输出端。这个指标从直觉上表示的是在输出端出现已知的馈通量时的最大共模转换速率。需要注意的是,某些隔离器的共模转换速率实际上就是最大非破坏性极限。这一点非常重要。当转换速率比最大指标低得多时,进行有意义的测量的能力将会受损。在使用隔离器时,最好能在重要的测量之前先测试共模馈通。这很容易做到,只需在探头触点和参考线上都用同一共模信号驱动并观察输出信号。

差分放大器和探头的类型
内置差分放大器。很多都能够用内置的功能进行最简单的差分测量。这种方式叫做“chanel A - chanel B”(通道A 减通道B)方式或者“准差分”方式。虽然性能上受到限制,这项技术还是适合一些测量的需求的。为了进行差分测量,要使用两个垂直通道,一个用于正输入,一个用于负输入。用于负输入的通道被设置成反转方式,显示方式则设置为“ADD Channel A + Channel B”(通道A 加通道B)。为了正常工作,两个输入必须设定在相同的标度系数,两个输入探头也必须是同型号的。现在显示器上出现的就是两个输入端的差电压。
为了获得最大的CMRR,两个通道的增益应当匹配。这不难做到,只须将两个探头连接到方波信号源并使信号源的振幅保持在设定的“电压/ 分度”的动态范围之内(大约±6 分度)。将一个通道的增益方式设置为“uncalibrated - variable”(非校准-可变),并调节可变增益控制旋钮直到显示的波形成为平直的轨迹。这项技术的主要局限性在于其共模范围比较小,这是垂直通道的动态范围造成的。一般来说,其值小于“电压/分度”设定值的10 倍(相对于地)。只要VCM > VDM,获得了差分结果的这种工作方式就可以认为是从两个大电压中提取了小差值。
在模拟信号数字化以后,大多数数字存储是在数字域中完成波形的数学分析。在减掉了共模信号之后,模数转换器有限的分辨率常常不适于检查所得到的差分信号。由于两个通道的交流增益没有精确地匹配,高频的CMRR 相当低劣。
这项技术适用于共模信号的振幅等于或低于差模信号,以及共模成分为直流或低频(如50 或60 Hz 的供电线)的情况。在测量中等幅度的信号时,这项技术可以有效地消除接地环路。

高电压差分探头。最近,市场上出现了高电压有源差分探头。一种采用固定衰减(带可变换差分增益)的新的拓扑可以使这些探头在所有的增益设置上保持其全部的共模范围。这种单一的衰减器大大降低了复杂程度从而减少了用户的成本。
这种探头为测量线连电路(通常用于开关电源、功率变换器、电动机、电灯镇流器等)提供了费用合理而又安全的方法。由于共模范围高达1,000 V,这种探头就不需要极其危险的“浮动示波器”的做法。最近,工作场所意外伤害监控组织,如美国的OSHA(职业安全和健康条例),强化了他们对设备接地的检查,违者将课以高额罚款。
除了安全上的好处之外,这种探头还可改进测量质量。一个明显的好处是能够充分利用示波器的多个通道来同时观察涉及不同电压的多个信号。由于这是真正的差分探头,故两个输入端均为高阻抗,即高电阻和低电容。浮动示波器和隔离器不具有平衡式的输入。参考点(探头上的“接地”夹)有相当大的对地电容。参考点所连接的任何源阻抗在快速共模跃迁过程中都会承受负荷,并使信号衰减。

图10. 即便示波器处于“浮动”状态,寄生电容也会形成交流分压器从而增加测量的误差。注意:回动的探头引线会给栅极增加>100 pF 的电容,有可能破坏电路。

更有甚者,高电容还可能损坏某些电路(参见图10)。将示波器的公共端接到逆变器上部的栅极可以使栅极驱动信号滞后,阻碍器件的关断并破坏输入桥。这种故障通常还会在工作台上出现小火花,很多功率电子器件的设计人员都可以作证。
使用平衡的低输入电容的高压差分探头,可以用任何引线安全地探测电路上的任一点。
高增益差分放大器。高增益差分放大器经常属于外接附件,可以使示波器测量幅度极低的信号,甚至小到几个微伏。为了避免因接地环路和接地梯度效应造成的破坏,这些信号总是以差分方式进行测量的,即便它们是以地为参考。当源不以地为参考时,共模信号可以比有用的差模信号大几个数量级。为了克服这个问题,这些放大器的CMRR值极高,经常达到1,000,000:1 或者更高。
有些高增益放大器还具有可以改善低幅度测量完整性的附加功能。可选的低通滤波功能可以使用户从低频信号中去除频带外噪声。差分偏移功能可用于消除引入到输入配线或传感器桥的偏置电压中的伽伐尼电位。为了能用于高驱动阻抗的信号源,有些型号还允许用户将输入设定在几乎无限大的阻抗上。
对任何差分放大器来说,通道增益最轻微的不匹配都会使放大器的高CMRR值大大降低。当应用中需要使用示波器探头时,只能使用相同的非衰减模式(1X),因为衰减的探头可能匹配得不够好,不足以保持CMRR 值。
高性能差分放大器。带有插入式放大器的示波器的出现使得高性能差分放大器的使用成为可能。这种放大器综合了许多特性,适合于多种应用。校准的偏压补偿可以使该放大器用于单端模式,其轨迹可以参考距地几千个分度的位置。
这样就有可能精确地测量电源中的波纹谷值以及功率放大器的净空度。最先进的高速钳位电路能使放大器从超标几百倍的输入过载中迅速恢复。这就提供了直接测量放大器和DAC电路的稳定时间的可能性。

这种放大器的特点是带宽指标高达100 MHz以上,CMRR特性也很好。但是CMRR 指标是在两个输入端直接连在一起而且用低阻抗信号源驱动的情况下获得的。在实际应用中,信号源阻抗和通道增益的差异会使高频时CMRR 值明显降低。
差分无源探头。为了尽量减少性能的退化,这些放大器只能使用特别匹配的差分无源探头。要保证按照探头制造商给出的程序针对该放大器对探头进行单独校准。
高带宽有源差分探头。这种探头在其触点处对信号进行缓冲,以此保持高频CMRR 的质量,故可消除无源探头导致的性能下降问题。这种探头具有高带宽(100 MHz 以上)、高灵敏度,而且有极佳的高频CMRR 性能。这种探头一般用于测量磁盘驱动器的读出电路(其信号本质上是差分信号)。由于在查找地面反跳问题时不会改变接地梯度,这种探头在探查高速数字电路时得到越来越普遍的应用。
电压隔离器。尽管电压隔离器不是真正的差分放大器,但它们提供了安全地测量浮动电压的一种手段。与差分放大器相比,隔离器也有一些折衷的优势,选择哪一种则取决于应用。如其名称所示,隔离器并不直接连接浮动的输入端与接地的输出端。信号的耦合是



关键词:差分示波器

评论


相关推荐

技术专区

关闭