新闻中心

EEPW首页>嵌入式系统>设计应用> 基于AVR单片机atmega32的PID和PWM液体流量控制系统研究

基于AVR单片机atmega32的PID和PWM液体流量控制系统研究

作者: 时间:2013-12-12 来源:网络 收藏
1. 引言
液体流量控制通常采用电磁阀实现,近年来,电磁阀的结构和控制方式发生了很大的变
化,随着计算机进入控制领域,以及新型的电力电子功率元器件的不断出现,使采用全控制的开关功率元件进行脉宽调制(pulse width modulation ,简称)控制方式得到了广泛的应用。这种控制方式很容易在单片机中实现,从而为电磁阀的控制数字化提供了契机。
将偏差的比例(proportion)、积分(integral)、微分(differential)通过线性组合构成控制量,用这一控制量对被控对象进行控制,这样的控制器称控制器。控制器最早出现在模拟控制系统中,传统的模拟控制器是通过硬件(电子元件、气动和液压元件)来实现它的功能。随着计算机的出现,把它移植到计算机控制系统中来,将原来的硬件实现的功能用软件来代替,因此称作数字PID控制器,所形成的一整套算法则称作数字PID算法。数字PID控制器与模拟PID控制器相比,具有非常强的灵活性,可以根据试验和经验在线调整参数,因此可以得到更好的控制性能。
2.组成
本系统采用AVR系列的单片机为核心,通过设置控制寄存器产生脉宽可调的波,对比例电磁阀的输入电压进行调制,从而实现了对液体流量的变量控制。单片机统过涡轮流量计采集实际流量信号,根据该信号在其内部采用数字PID算法对PWM控制寄存器的值进行修改,从而达到精确的变量控制。为了防止外界干扰信号进入控制系统,单片机和涡轮之间采用光藕隔离,提高了系统的可靠性。温度传感器和压力传感器用来做监测喷杆中的压力和温度。通过4*4键盘和128*64液晶模块实现人机对话,便于用户操作。系统原理图如图2-1所示:

基于AVR单片机atmega32的PID和PWM液体流量控制系统研究
图2-1

3硬件部分
3.1 PWM驱动电路

基于AVR单片机atmega32的PID和PWM液体流量控制系统研究

单片机输出的PWM脉冲信号分别经7406和7407输入到Q1,Q2的G极,在每个PWM周期的高电平区间,Q1导通,Q2截止,电磁阀导通。在每个PWM周期的低电平区间,Q1截止从而切断了电源,电磁阀的感应电动势经Q2内部续流二极管形成回路。此时Q2的G极为高电平但是由于二极管的钳位作用使开关二极管关闭,因此通过调整单片机的PWM波就可以实现电磁阀输入电压占空比的调节,从而实现对流量的调节。
3.2 比例电磁阀
比例电磁阀在上世纪60年代末就已经得到了应用,最初是用于液压控制系统。随着单片机和集成电路的发展,其逐渐应用到各种液体的流量控制中。比例型电磁铁的工作原理如下:线圈通电后,轭铁和衔铁内部产生磁通并产生电磁吸力,将衔铁吸向轭铁,同时衔铁上的弹簧受到压缩,当衔铁上的电磁力和弹簧力平衡时,衔铁停止位移。比例型电磁铁的吸力在有效行程范围内和线圈的电流或电压大小具有线形关系。因此通过调解输入的电流或者电压就可以控制其开口的大小,从而达到变量控制的目的。本系统采用的比例电磁阀特性曲线如图3-1所示:(Kvs代表比例电磁阀最大开口时的流量,Kv代表对应某一电压或者电流值时的流量值)。

基于AVR单片机atmega32的PID和PWM液体流量控制系统研究

4. 软件部分
4.1 PWM波的产生
设计采用单片机产生PWM信号。atmega32的定时/计数器的PWM模式可以分成快速PWM和频率(相位)调整PWM两大类。 本设计采用快速PWM模式,快速PWM可以的到比较高频率的PWM输出,响应比较快,因此具有很高的 实时性。此时计数器仅工作在单程正向计数方式,计数器的上限值决定PWM的频率,而比较匹配寄存器的值决定了占空比的大小。快速PWM模式的控制寄存器设置如下:
//输出端口初始化
PORTD=0x44;
DDRD=0x20;
//T/C1初始化
TCCR1A=0xC3;/*比较匹配时OC1A输出高电平,在top值时清零ICP下降沿捕捉,
时钟1/8分频(暂定),即工作在反相pwm模式*/
TCCR1B=0x0A;//10位快速pwm模式
TCNT1H=0x00;//start at 0
TCNT1L=0x00;

pwm相关文章:pwm原理



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭