新闻中心

EEPW首页>嵌入式系统>设计应用> 基于单片机控制的程控开关电源研究

基于单片机控制的程控开关电源研究

作者: 时间:2011-10-11 来源:网络 收藏

近年来,人们不断地应用单片机在开关电源控制方面寻求一种设计较为合理的解决方案。较为常见的解决方案有两种。(1)模数混合基本形式。①单片机只是承担智能检测与智能控制任务,电源的控制仍是一般开关电源的控制模式[1];②由单片机输出一个电压(经DA芯片或PWM方式)用作电源的基准电压,同时还必须有功率开关的驱动电路芯片(PWM产生电路)。这种方式仅仅是用单片机代替了原来的基准电压,用按键输入电源的电压值来改变输出电压,单片机并没有加入电源的反馈环[2]。(2)利用单片机扩展AD,不断检测电源的输出电压和电流,根据电源输出电压与设定值之差控制逆变器,改变功率场效应管的导通与关断时间,达到输出电压稳定的目的。采用单片机技术进行输出电压调整,在方案过程中,实现使用了PFM方向PWM两种波形控制技术的软件编程方法[3],使得实现技术过于复杂。
为此,本文提出一种新的直流开关稳压电源工作方式,利用单片机完成PWM波的产生,使用AD转换芯片,不断循环检测电源输出电压,根据电源输出电压与设定值相比较的差,直接控制调解单片机输出PWM波占空比,从而控制电源功率开关的导通关断时间,最终实现电源输出电压的稳压。输出电压的调节则采用通过改变PWM脉冲宽度的方式实现。在这种工作方式基础上设计的开关电源与上述的两种解决方案相比,具有方法简单、使用器件少及可靠性高等特点。
1电源系统设计
1.1电源硬件结构设计

基于硬件系统如图1所示。该系统由两大部分组成:(1)控制电路由单片机软件编程产生PWM信号控制功率开关管导通和关断,同时单片机对AD采集的输出反馈电压、电流信号进行运算结果处理并根据程序设置改变PWM信号输出状态,达到稳定输出电源电压的目的。(2)主电路由典型单端反激电路高频变压器、功率MOS开关组成,完成DC-DC变换[4]。单片机对AD采集的信号进行运算,分别用来调整PWM信号的脉宽和控制液晶显示。单片机的供电是从220 V电网经小功率变压器,再进行整流滤波、稳压后得到。应用AD对输出电压进行采集,并通过单片机对采集信号进行分析和处理。当输出电压超过额定电压10%或负载电流大于额定电流20%时,单片机自动关断PWM控制信号,同时产生报警提示以避免损坏用电设备或开关电源。

基于单片机控制的程控开关电源研究

1.2单片机系统电路设计
单片机系统电路设计是电源设计的核心,兼顾运算能力与控制能力,并考虑设计成本等因素,系统选用了性价比较高的STC89C52单片机作为核心控制器,其系统电路如图2所示。STC89C52是一款低功耗、高性能的8 bit微处理器,片内含有8 KB Flash程序存储器和512 B的RAM,最高时钟频率为40 MHz,机器周期可设置为6个。AD转换芯片采用的是TLC2543,它是一款12 bit AD转换器,转换时间为10 ?滋s,具有11路模拟输入通道,最大误差为±1LSB。

基于单片机控制的程控开关电源研究

1.3 AD采样电路设计
AD采样电路如图3所示。AD采样要完成电源输出电压、电流两部分检测任务。

基于单片机控制的程控开关电源研究

(1)输出电压检测
TLC2453转换芯片不断地检测电源输出电压,根据采集到的电压值调整PWM占空比,形成电源反馈回路,使输出电压稳定在5 V。当输出电压大于5.5 V时,单片机及时地做出判断,关断PWM驱动信号,从而关断电源输出。TLC2543的第一通道AN0对Sample-V点进行采样得UV。Uo值可根据下面公式计算:
基于单片机控制的程控开关电源研究
式中,UV为电源输出AD采样点电压,R1、R2为采样分压电阻。
(2)输出电流的检测
单片机控制TLC2453转换芯片不断地检测电源负载电流,根据采集到的电流值与设定值进行比较,单片机可及时做出判断。当负载电流大于2.4 A时,单片机会迅速关断PWM驱动信号,使电源输出关断,保护外围电路。图3中CS010GT是霍尔效应开环电流传感器,其原边额定输入电流IPN=10 A,其输出电压在一定范围内与通过它的电流成正比。TLC2453的第二通道AN1对CS010GT的电压输出端Sample-C进行采样,当输出电流大于2.4 A时,单片机会迅速地关断PWM驱动信号,使电源输出关断,保护外围电路。
2 电源软件程序设计
2.1软件系统设计

基于单片机控制的软件主程序流程框图[5-6]如图4所示。程序开始执行时,先对液晶、键盘等外部接口进行初始化,再对单片机定时器进行初始化,使单片机的一个I/O口输出频率为30 kHz的PWM信号,驱动MOS开关管,使电源输出直流电压。此时程序进入AD采样循环,当输出电压或电流大于保护值时,单片机会关断PWM信号的输出。程序对AD采集反馈电压的数值与键盘设定的数值实时进行比较,如果大于设定的电压值,则减小PWM脉宽,减小刻度为PWM最小分辨率;如果输出电压小于设定的电压,值则增大PWM脉宽,增大刻度为PWM最小分辨率。通过AD对输出电压的实时采集和PWM信号的实时脉宽调整,使开关电源输出稳定的直流电压。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭