新闻中心

EEPW首页>光电显示>设计应用> LED照明灯存在的问题和解决办法

LED照明灯存在的问题和解决办法

作者: 时间:2011-04-06 来源:网络 收藏
作就需要良好的散热,并要求在设计阶段就考虑高温环境。   设计LED驱动电路尺寸时,也必须考虑温度因素:必须选择其正向电流,以确保即使环境温度达到最高值,LED芯片也不会过热。随着温度的升高,就需要通过降低最高容许电流,即降低额定值,来实现降温。LED制造商把降额曲线纳入其产品规格中。

有关此类曲线,参见图1。

图1 LED降频曲线

  利用无温度依赖性的电源运行LED存在弊端:在高温区域内,LED则超出规格范围运行。此外,当处于低温区域时,源就由明显低于最大容许电流(参见图1红色曲线)的电流供电。如图1的绿色曲线所示,通过LED驱动电路中的正温度系数热敏电阻(简称PTC热敏电阻)来控制LED电流是一个重大改进。这至少可以带来下列好处:
  *在室温下增加正向电流,从而增加光输出
  *因为可以减少LED使用量,所以可以使用价格较低的驱动集成电路(简称IC)乃至一个不带温度管理的驱动电路来节约成本
  *实现无需IC控制的驱动电路设计,此电路亦可使LED电流随温度改变
  *能够使用较便宜减额值较高安全裕量较小的LED
  *过热保护功能提高了可靠性
  *带散热片的热机械设计更为简单
  大多数LED用驱动电路形式具有一个共同点:即流经LED的正向电流是通过固定电阻进行设置(参见图 

   2)。一般说来,流经LED ILED的电流取决于Rout,即ILED ~ 1/Rout。由于Rout不随温度而变,因此LED电流也不受温度影响。
将固定电阻换成随温度变化的电路,即可实现对LED电流的温度管理。下列图表阐明了如何使用PTC热敏电阻来改善标准电路。
  示例1:有反馈回路的恒流源
  图2中电路1为常用的驱动电路。其恒流源包括一条反馈回路。当调节电阻两端的反馈电压达到因IC而异的VFB时,LED电流就不变了。LED电流因而被稳定在ILED=VFB/Rout。


图2 LED的传统驱动方式

  图3所示为上一电路改良型:此电路借由PTC热敏电阻,生成随温度变化的LED电流。通过正确选择PTC热敏电阻、Rseries以及Rparallel,此电路与专用驱动IC和LED组合相匹配。其中,LED电流可经由下列方程式计算得出:
  图3所示电路阐明了LED电流(参见图3)的温度依赖性。与针对最高运行温度为60度的恒流源相比较,使用PTC热敏电阻后LED电流可在0度和40度之间提升达40%,并且LED亮度也能提高同等百分比。


  图3 采用PTC热敏电阻的温度监测和电流降频
  示例2:调节电阻与LED无串联的恒流源
  图2所示电路2为另一常见的恒流源电路:电流通过连接驱动IC的电阻得以确定。然而在这种情况下,调节电阻并未与LED串联。Rset和ILED之间的比率由IC规格明确。因此,运用20kW的串联电阻和TLE4241G型驱动IC,最终产生的LED电流为30mA。图4所示为标准电路改良型,其中也含有一个PTC热敏电阻,尽管此处采用WHPTC热敏电阻。在感测温度,元件电阻可达4.7kW,且容许误差值为±5℃(标准系列)或±3℃(容许误差值精确系列)。
  图4所示为随外界温度而变化的LED电流。固定电阻Rseries容许误差范围小,在低温时支配总电阻。只有在低于PTC热敏电阻的感测温度大约15 K时,由于PTC热敏电阻的阻值开始增加,电流才会开始下降。在感测温度(总电阻=Rseries+RPTC=19.5kW+4.7kW=24.2kW)时的电流大约为23mA。PTC电阻在温度更高时急剧上升,迅速引发断路,从而避免因温度过高出现故障。



  图4 无分流测量之温度记录
  示例3:无IC简单驱动电路
  如图2所示电路3,LED也可在无驱动IC的情况下工作。图示电路是通过车用电池驱动单一200mA LED。稳压器生成5 V的稳定电源电压Vstab,以避免电源电压出现波动。LED在Vstab处运作,电流则通过与LED串联的电阻元件Rout决定。在这类电路中,通过下一则等式可算出独立于温度的正向电流,在此等式中,VDiode是一个LED的正向电压:
  另一做法是将WHPTC的径向引线式PTC热敏电阻以及两个固定电阻相组合后,替代上述固定电阻,如图所示。
  由于LED电流的绝大部分流经PTC热敏电阻本身,因此需要选择一个较大的径向引线式元件。PTC将因为流经电阻本身的电流而导致发热,因此会一直减少电流,无论环境温度为何(如图5所示)。并联两个或更多片式PTC热敏电阻会将电流分流,但此方案仍存在局限性。


图5 无需IC的温度补偿驱动电路

  电流值主要是通过适当选择两个固定电阻来设置的。这两个电阻也在改进电路方面也起到重要作用,因为它们将产生的LED正向电流的允差保持在较低水平。这在正常工作温度范围内尤其重要,因为此时PTC热敏电阻本身的阻值允差仍较高。第二个并联固定电阻也能确保PTC不会在极端高温情况下彻底关闭LED,因此,电流不会降至低于下列等式计算的所得值:

这项性能在例如汽车电子这样的应用中极其重要,因为安全要求不允许灯彻底关闭。
背景资料:LED的温度依赖性

  像所有半导体一样,LED的最高容许结点温度不能超过,以免导致过早老化或者完全失效。如果结点温度要保持在临界值以下,那么外界温度升高时,最高容许正向电流则必须下降。不过,如果运用散热器,在特定的外界温度时正向电流可以增加。LED的光输出随着芯片结点温度的升高而下降。上述情况主要发生在红色和黄色LED,白色LED则与温度关系较小。光照效率和正向电流保持同步增长,不过,安装在结层和环境之间的LED所具备的高热阻率可以降低乃至逆转这种作用,这是因为随着结点温度的上升,发射光会降低。

  此外,当结点温度上升且LED正向电压与温度保持同步增长时,发射光的主波长会以+0.1 nm / K的典型速率增长。 各种白光LED驱动电路特性评比 1996年,日亚化学的中村氏发现蓝光LED之后,白光LED就被视为光源最具发展潜力的组件,因此,有关白光LED性能的改善与商品化应用,立即成为各国研究的焦点。目前,白光LED已经分别应用于公共场所的步道灯、汽车照明、交通号志、可携式电子产品、液晶显示器等领域。由于白光LED还具备丰富的三原色色温与高发光效率的特性,一般认为非常适用于液晶显示器的背光照明光源,因此,各厂商陆续推出白光LED专用驱动电路与相关组件。鉴于此,本文就LED专用驱动电路的特性与今后的发展动向进行简单阐述。 1 定电流驱动的理由
  1.1 白光LED的光度以顺向电流规范
白光LED的顺向电压通常被规范成20mA时,最小为3.0V,最大为4.0V,也就是若单纯施加一定的顺向电压时,顺向电流会作大范围的变化。

  图1是从A、B两家LED企业的产品中随机取三种白光LED样品进行顺向电压与顺向电流特性检测的结果。根据检测结果显示,若利用3.4V顺向电压驱动上述六种白光LED时,顺向电流会在10~44mA范围内大幅变动。表1为白光LED的电气与光学特性。



  由于白光LED的光度与色度是以定电流方式量测的,所以,为获得预期的亮度与色度,通常是用定电流驱动。



  表2为光学坐标的等级(rank)(IF=25mA,Ta=250C)。
  1.2 避免顺向电流超越容许电流值
为确保白光LED的可靠性,基本上就是需要设法避免顺向电流超过白光LED的绝对最大设计值(定格值)。



  图2中,白光LED的定格最大顺向电流为30mA,随着周围温度的上升,容许顺向电流则持续衰减,如果周围温度为50℃,通常顺向电流就不能超过20mA。此外,利用定电压的驱动方式不易控制流入LED的电流值,因此就无法维持LED的可靠性。
2 白光LED的驱动方法

led灯相关文章:led灯原理


>电子变压器相关文章:电子变压器原理




关键词:led照明

评论


相关推荐

技术专区

关闭