新闻中心

EEPW首页>电源与新能源>设计应用> 一款可实现超低压差CMOS线性稳压器的设计方案

一款可实现超低压差CMOS线性稳压器的设计方案

作者: 时间:2014-01-07 来源:网络 收藏
ont-family: 宋体, Georgia, verdana, serif; ">4、瞬态响应

本文引用地址://m.amcfsurvey.com/article/227098.htm

瞬态响应是稳压器的动态特性,指负载电流阶跃变化引起输出电压的瞬态脉冲现象和输出电压恢复稳定的时间,与输出电容COUT和输出电容的等效串联电阻RESR,以及旁路电容Cb有关,最大瞬态电压脉冲值ΔVTR(MAX)为:

一款可实现超低压差CMOS线性稳压器的设计方案

其中: IO(MAX)是指发生阶跃变化的最大负载电流;Δt1是稳压器闭环的响应时间,与稳压器闭环带宽(0dB频率点)有关。设计应用时需考虑降低稳压器的瞬态电压脉冲,即提高稳压器的带宽,增大输出和旁路电容,降低其等效电阻。

5、输出精度

稳压器的输出精度是由多种因素的变化在输出端共同作用的体现,主要有输入电压变化引起的输出变化ΔVLR、负载变化引起的输出变化ΔVLDR、基准漂移引起的输出变化ΔVref、误差放大器失调引起的输出变化ΔVamp、采样电阻阻值漂移引起的输出变化ΔVres、以及工作温度变化引起的输出变化ΔVTC,输出精度ACC由下式给出:

一款可实现超低压差CMOS线性稳压器的设计方案

其中ΔVref、ΔVamp及ΔVres对ACC影响较大,故基准电压源、误差放大器及采样电阻网络的拓扑结构在设计时需重点考虑。

电路设计及模拟结果

1、带隙基准电压源的设计

基准电压源是的核心模块,是影响稳压器精度的最主要因素。带隙基准电压源的工作原理是利用晶体管的VBE所具有的负温度系数与不同电流密度下两晶体管之间的ΔVBE所具有正温度系数的特性,乘以合适的系数使二者相互补偿,从而得到低温漂的输出电压。

电路实现如图2所示,有:

一款可实现超低压差CMOS线性稳压器的设计方案

其中n为Q1、Q2的发射区面积比。Hspice模拟结果表明,当电源电压变化范围在2.5~6V之间时,常温下VREF = 1.254V,温度变化范围在-30~120℃之间时,温漂系数小于10×10-6/℃。

一款可实现超低压差CMOS线性稳压器的设计方案

图2带隙基准源电路2、误差放大器的设计

误差放大器将输出反馈采样电压与基准电压进行差值信号比较放大,输出后控制调整管的导通状态,保持Vout稳定,其增益、带宽及输入失调电压等指标对稳压器的输出精度、负载和电压调整能力、瞬态响应等特性有较大影响,电路实现如图3所示。通过Hspice模拟得到该误差放大器在VCC1为4.2V时,其输入失调电压为0.05μV,直流增益为110dB,带宽达到10MHz.

一款可实现超低压差CMOS线性稳压器的设计方案

图3误差放大器电路

3、过流限制模块的设计

过流限制电路的设计思路是通过对调整管栅源电压进行采样,实现控制调整管的栅极电压,从而达到限制输出电流的目的,电路实现如图4所示。

一款可实现超低压差CMOS线性稳压器的设计方案

图4过流限制电路

当负载电流由小增大时,VDrv随之降低,调整管MTG的ID随之增大,通过M20对调整管MTG的栅源电压进行采样,使得M31的栅极电压增大,这样M21的栅极电压随之降低,从而实现对VDrv的调整。通过Hspice模拟得到,当负载电流超过330mA时,M21将开始导通,从而使VDrv随之提高,使调整管MTG导通程度减弱,起到限流保护作用。

3.4过热保护模块的设计



关键词:CMOS线性稳压器

评论


相关推荐

技术专区

关闭