新闻中心

EEPW首页>电源与新能源>设计应用> 太阳能电池光电转换原理及技术改进详解

太阳能电池光电转换原理及技术改进详解

作者: 时间:2013-11-28 来源:网络 收藏
"_blank" style="color: rgb(62, 62, 62); cursor: pointer; text-decoration: none; ">

本文引用地址://m.amcfsurvey.com/article/227784.htm

在N区中:光生电子--空穴对产生以后,光生空穴便向P-N结边界扩散,一旦到达P-N结边界,便立即受到内建电场作用,被电场力牵引作漂移运动,越过耗尽区进入P区,光生电子(多子)则被留在N区。

在P区中:的光生电子(少子)同样的先因为扩散、后因为漂移而进入N区,光生空穴(多子)留在P区。如此便在P-N结两侧形成了正、负电荷的积累,使N区储存了过剩的电子,P区有过剩的空穴。从而形成与内建电场方向相反的光生电场。

1.光生电场除了部分抵消势垒电场的作用外,还使P区带正电,N区带负电,在N区和P区之间的薄层就产生电动势,这就是光生伏打效应。当接上一负载后,光电流就从P区经负载流至N区,负载中即得到功率输出。2.如果将P-N结两端开路,可以测得这个电动势,称之为开路电压Uoc。对晶体硅来说,开路电压的典型值为0.5~0.6V。

3.如果将外电路短路,则外电路中就有与入射光能量成正比的光电流流过,这个电流称为短路电流Isc。
影响光电流的因素:

1.通过光照在界面层产生的电子-空穴对愈多,电流愈大。

2.界面层吸收的光能愈多,界面层即面积愈大,在太阳电池中形成的电流也愈大。

3.电池的N区、耗尽区和P区均能产生光生载流子;

4.各区中的光生载流子必须在复合之前越过耗尽区,才能对光电流有贡献,所以求解实际的光生电流必须考虑到各区中的产生和复合、扩散和漂移等各种因素。

电池等效电路、输出功率和填充因数

⑴ 等效电路

为了描述电池的工作状态,往往将电池及负载系统用一个等效电路来模拟。

1.恒流源: 在恒定光照下,一个处于工作状态的太阳电池,其光电流不随工作状态而变化,在等效电路中可把它看做是恒流源。

2.暗电流Ibk : 光电流一部分流经负载RL,在负载两端建立起端电压U,反过来,它又正向偏置于PN结,引起一股与光电流方向相反的暗电流Ibk。3.这样,一个理想的PN同质结电池的等效电路就被绘制成如图所示。

4.串联电阻RS:由于前面和背面的电极接触,以及材料本身具有一定的电阻率,基区和顶层都不可避免地要引入附加电阻。流经负载的电流经过它们时,必然引起损耗。在等效电路中,可将它们的总效果用一个串联电阻RS来表示。

5.并联电阻RSh:由于电池边沿的漏电和制作金属化电极时在微裂纹、划痕等处形成的金属桥漏电等,使一部分本应通过负载的电流短路,这种作用的大小可用一个并联电阻RSh来等效。

当流进负载RL的电流为I,负载RL的端电压为U时,可得:

式中的P就是太阳能电池被照射时在负载RL上得到的输出功率。

⑵ 输出功率

当流进负载RL的电流为I,负载RL的端电压为U时,可得:

式中的P就是太阳能电池被照射时在负载RL上得到的输出功率。



评论


相关推荐

技术专区

关闭