新闻中心

EEPW首页>电源与新能源>设计应用> 太阳能的利用—薄膜太阳电池

太阳能的利用—薄膜太阳电池

作者: 时间:2013-07-14 来源:网络 收藏
、低互溶性和适当的相变能量,使用镍金属诱导a-Si薄膜的方法得到了横向结晶的多晶硅薄膜。横向结晶的多晶硅薄膜的表面平滑,具有长晶粒和连续晶界的特征,晶界势垒高度低于SPC多晶硅的晶界势垒高度,因此,MILC TFT具有优良的性能而且不必要进行氢化处理。

  该法制备多晶硅薄膜具有均匀性高、成本低, 生长温度在500℃等特点。但是MILC目前它的晶化速率仍然不高,并且随着热处理时间的增长, 速率会降低。有人采用MILC和光脉冲辐射相结合的方法,实现了 a-Si薄膜在低温环境下快速横向晶化,得到高迁移率、低金属污染的多晶硅带。

  (7)其他方法

  除了上述几种制备多晶硅薄膜的主要方法外,还有超高真空化学气相沉积(UHV/CVD)、电子束蒸发等。用UHV/CVD生长多晶硅,当生长温度低于550℃时能生成高质量细颗粒多晶硅薄膜,不用再结晶处理,这是传统CVD做不到的,因此该法很适用于低温多晶硅薄膜晶体管制备。另外,日立公司研究指出,多晶硅还可用电子束蒸发来实现,温度低于 530℃。因此,我们相信随着上述几种多晶硅制备方法的日益成熟和新的制备方法的出现,多晶硅技术的发展必将跨上一个新的台阶,从而推动整个半导体产业和相关行业的发展。

  总的来说,高温技术晶化的材料具有较大的晶粒尺寸,用这种材料制备的效率在10%以上.其缺点是能耗高、工艺复杂,衬底材料成本高. 低温晶化技术制备的薄膜晶粒尺寸小,效率也低, 但其最大的优点是便于采用玻璃等廉价材料作衬底,工艺较简单,能耗低. 如将微晶硅薄膜或多晶硅薄膜作为窄带隙材料与非晶硅薄膜组成叠层结构, 则可更充分地利用太阳光谱. 因微晶硅薄膜和多晶硅薄膜比非晶硅锗(a-SiGe)具有更窄的带隙(1.12eV),用a-Si/μc-Si和a-Si/poly-Si叠层结构代替a-Si/a-SiGe/a-SiGe三结叠层结构,可将太阳电池光谱响应的长波限从目前的0.9μm扩展到 1.1μm, 这样可提高10% 的的利用率. 目前非晶硅和微晶硅叠层太阳电池的稳定效率已达12%. 理论上a-Si/poly-Si叠层电池的效率可达28%. Kaneka公司设计的STAR结构的多晶硅薄膜电池, 效率已达10.7%, 且无光致衰退现象; 另一种SOI结构的多晶硅薄膜电池10cmχ10cm, 获得了14.22%的效率, H.Morikawa 等制出了效率为16% 的多晶电池. 理论和实验均表明多晶电池很可能成为21世纪最有前途的一种薄膜太阳电池.大面积多(微)晶硅薄膜的获得及与非晶硅的最佳优化设计,将使硅基薄膜太阳电池性质跃上新的台阶.

4.铜铟硒(CIS)薄膜和铜铟镓硒(CIGS)薄膜太阳电池

  铜铟硒薄膜是一种Ⅰ-Ⅲ-Ⅵ族化合物半导体,具有黄铜矿闪锌矿两个同素异形的晶体结构.掺入镓即形成四元化合物.

  铜铟硒薄膜和铜铟镓硒薄膜的制备方法很多,大致有物理方法和化学方法两种. 经过多年的研究和开发, CdS/CuInSe2电池组件的效率已达11%, CdS/CuInGaSe2 电池组件的效率已达18%, 並已建立起了工业化生产线. 该电池的主要优点是: 材料具有较高的光吸收(∝>105cm-1), 所需材料厚度小于1μm, 90% 以上的光子可被吸收; 生产成本低, 仅为电池的1/3-1/2, CIGS材料随着铟镓含量不同, 其光学带隙可从1.02eV变至1.68eV, 这点对于制造多结叠层太阳电池极为有利; 电池的光电转换效率比较高. 主要问题是: 制造过程比较复杂; 关键原料如铟的供应, 其天然储量相当有限; 太阳电池中的缓冲层材料 CdS是必不可少的, 其毒性对环境的危害, 极大地影响了它的广泛应用. 美国的Shell Solar公司正在进行这种电池的商业化生产, 建立了世界上第一条CIS薄膜太阳电池生产线,组件效率达11%。2001年销售CIS组件0。4MWp,生产能力达25MW/年,2002年出口15MWp,2003年增加到40MWp。 ISET公司提出了利用纳米技术以类似油墨的制造过程, 制备层状结构, 已获成功, 能否发展成规模化的制造过程, 还有待时间. 另外美国的NREL公司亦成功地开发了一种三级制造过程, 在实验室获得了19.2% 的光电转换效率. 不过其制造过程太复杂,花费亦大,放大亦不易.

5.碲化镉(CdTe)薄膜太阳电池

  这种太阳电池系由CdTe、CdS和Ⅱ-Ⅵ族化合物通过相对简单且成本低的工艺沉积在衬底上经干燥和烧结而成,其研究历史悠久.1982年Kodak公司做出了转换效率超过10%的电池,目前实验室的效率达到16.5%, 中试线的效率达到10%, 已由实验室的研究阶段走向规模化工业生产. 典型的CdTe太阳电池结构是由约2μm层的p型碲化镉层和0.1μm厚的n型硫化镉形成, 光子吸收发生在碲化镉层, 光的吸收系数大于105cm-1, 因此数微米厚的材料可吸收大于90%的光子.

  目前已开发了多种CeTe薄膜的制造工艺, 如溅射法、 化学气相反应法、原子层外延法、 网印法、 电流沉积法、 化学喷塗法、 密堆积升华法等. 其中电流沉积法是最便宜的, 也是目前工业生产的主要方法. 沉积时温度较低,所消耗的碲元素也最少.

  这种薄膜太阳电池难以大批量生产的原因是:鎘的毒性会对环境造成的危害; 组件和衬底材料成本太高, 占总成本的53%, 而半导体材料只占5.5%; 碲的天然储量有限.

6.染料敏化太阳电池(DSSC)

  此类太阳电池源自19世纪照相技术的概念. 直到1991年瑞士科学家Gratzel采用纳米结构的电极材料, 以及配以适当的染料, 做出了光电转换效率大于7%的太阳电池. 此后该领域的开发研究才引起人们的关注. 这种概念的太阳电池完全不同于传统的半导体光伏发电原理, 可说是第三代太阳电池。 其原理是借助于染料作为吸光材料, 染料中的价电子受光激发跃迁到高能态, 进而传导到纳米多孔二氧化钛半导体电极上, 经由电路引至外部, 失去电子的染料则经由电池中的电解质获得电子, 电解质是含碘的有机溶剂.

  这类电池的结构一般有两种, 实验室制备的通常为三明治结构, 上下均为玻璃, 玻璃内侧涂有TCO, 当中包括含有染料的二氧化钛以及电解质. 为利用已较成熟的薄膜太阳电池制造技术, Gratzel等于1996年研究出三层式的单片电池结构, 用碳电极取代一层TCO薄膜, 各层的制备可直接沉积在另一层的TCO薄膜上. 玻璃並非为必然的基材, 其他可挠性透明材料均可使用, 因此roll-to-roll的制造工艺亦可应用于此. 德国的 ISE公司已开发出丝网印刷方式的生产工艺, 制造过程非常简单.

  染料敏化太阳电池如要成为具有商业竞争力,甚至达到具有高的市场占有率, 如下几点是必需考虑:

  1)太阳电池本身的长期稳定性,尽管有一些测试,*估推算出使用十年没问题, 但毕竟缺乏长期使用的实测数据.

  2)对于大面积的制造技术仍有待开发.

  3)对整体电池组件的研究开发仍有许多工作要做.

  用光稳定性更好的半导体材料代替多孔的二氧化钛理论上应较易获得更耐久的染料太阳电池, 有关这方面的研究有部分研究单位正在积极投入. 此外开发新式染料来取代迄今公认的最佳染料有机钌金属亦是一项热门研究课题, 如获成功则可免除使用贵金属钌, 染料成本可大幅降低.

 7.有机薄膜太阳电池

  有机薄膜太阳电池是把两层有机半导体薄膜结合在一起, 其光电转换效率约为1% .近期日本产业技术综合研究所宣布已开发出一种新型的有机薄膜太阳电池, 即在原有的二层构造中间加入一种混合薄膜变成三层结构 ,这样就增加了产生电能的分子之间的接触面积, 从而大大提高了太阳电池的转换效率, 达到4%, 比原来二层结构的提高了4倍.

  有机薄膜太阳电池使用塑料等质轻柔软的材料为基板,有机小分子光电转换材料本身具有低成本,可以加工成大面积,合成、表征相对简单,化学结构容易修饰,可根据需要增减功能基团,可通过不同的方式互相组合,以达到不同的目的。 因此对它的实用化期待很高, 研究人员表示, 通过进一步研究有望开发出光电转换效率达20% 的可投入实用的有机薄膜太阳电池, 也许在不久的将来, 塑料材料的太阳电池将出现在人们的日常生活中.

  与无机光伏材料相比,有机光伏材料的激子结合能大,不容易自然分离成正负电荷,这样吸收光就不一定产生光电流;电子不是通过能带,而是通过能级间的跃迁而传输,电子迁移率明显较低;许多材料在氧和水的环境下不稳定;温度变化对光电流的产生有很大影响。这些问题限制了有机太阳电池的发展。 最近有人提出充分利用有机材料和无机材料的优点制备有机/无机材料的复合器件,成为当前研究的一个新热点。

8.结语

  从以上所述的各类薄膜太阳电池的发展情况, 不难发现努力提高光电转换效率和大幅降低太阳电池的成本是各类薄膜太阳电池的共同课题. 当前太阳电池产业呈现35% 的年增长率. 薄膜太阳电池亦发展很快, 但传统硅太阳电池的技术发展



评论


相关推荐

技术专区

关闭