新闻中心

EEPW首页>电源与新能源>设计应用> MOSFET结构及其工作原理详解

MOSFET结构及其工作原理详解

作者: 时间:2012-03-23 来源:网络 收藏
阻放电回路,以提高功率MOSFET的开关速度;③为了使功率MOSFET可靠触发导通,触发脉冲电压应高于管子的开启电压,为了防止误导通,在其截止时应提供负的栅源电压;④功率开关管开关时所需驱动电流为栅极电容的充放电电流,功率管极间电容越大,所需电流越大,即带负载能力越大。

4.1几种MOSFET驱动电路介绍及分析 

不隔离的互补驱动电路图

不隔离的互补驱动电路图

a)为常用的小功率驱动电路,简单可靠成本低。适用于不要求隔离的小功率开关设备。图7(b)所示驱动电路开关速度很快,驱动能力强,为防止两个MOSFET管直通,通常串接一个0.5~1Ω小电阻用于限流,该电路适用于不要求隔离的中功率开关设备。这两种电路特点是结构简单。

功率MOSFET 属于电压型控制器件,只要栅极和源极之间施加的电压超过其阀值电压就会导通。由于MOSFET存在结电容,关断时其漏源两端电压的突然上升将会通过结电容在栅源两端产生干扰电压。常用的互补驱动电路的关断回路阻抗小,关断速度较快,但它不能提供负压,故抗干扰性较差。为了提高电路的抗干扰性,可在此种驱动电路的基础上增加一级有V1、V2、R组成的电路,产生一个负压,电路原理图如图8所示。

提供负压的互补电路图

提供负压的互补电路图

当V1 导通时,V2关断,两个MOSFET中的上管的栅、源极放电,下管的栅、源极充电,即上管关断,下管导通,则被驱动的功率管关断;反之V1关断时,V2导通,上管导通,下管关断,使驱动的管子导通。因为上下两个管子的栅、源极通过不同的回路充放电,包含有V2的回路,由于V2会不断退出饱和直至关断,所以对于S1而言导通比关断要慢,对于S2而言导通比关断要快,所以两管发热程度也不完全一样,S1比S2发热严重。

该驱动电路的缺点是需要双电源,且由于R的取值不能过大,否则会使V1深度饱和,影响关断速度,所以R上会有一定的损耗。

4.1.2隔离的驱动电路 

正激驱动电路

正激驱动电路

(1)正激式驱动电路。电路原理如图9(a)所示,N3为去磁绕组,S2为所驱动的功率管。R2为防止功率管栅极、源极端电压振荡的一个阻尼电阻。因不要求漏感较小,且从速度方面考虑,一般R2较小,故在分析中忽略不计。

其等效电路图如图9 (b)所示脉冲不要求的副边并联一电阻R1,它做为正激变换器的假负载,用于消除关断期间输出电压发生振荡而误导通。同时它还可以作为功率MOSFET关断时的能量泄放回路。该驱动电路的导通速度主要与被驱动的S2栅极、源极等效输入电容的大小、S1的驱动信号的速度以及S1所能提供的电流大小有关。由仿真及分析可知,占空比D越小、R1越大、L越大,磁化电流越小,U1值越小,关断速度越慢。该电路具有以下优点:

①电路结构简单可靠,实现了隔离驱动。

②只需单电源即可提供导通时的正、关断时负压。

③占空比固定时,通过合理的参数设计,此驱动电路也具有较快的开关速度。

该电路存在的缺点:一是由于隔离变压器副边需要噎嗝假负载防振荡,故电路损耗较大;二是当占空比变化时关断速度变化较大。脉宽较窄时,由于是储存的能量减少导致MOSFET栅极的关断速度变慢。

MOSFET栅极的关断速度变慢。 

有隔离变压器的互补驱动电路

有隔离变压器的互补驱动电路

(2)有隔离变压器的互补驱动电路。如图10所示,V1、V2为互补工作,电容C起隔离直流的作用,T1为高频、高磁率的磁环或磁罐。

导通时隔离变压器上的电压为(1-D)Ui、关断时为D Ui,若主功率管S可靠导通电压为12V,而隔离变压器原副边匝比N1/N2为12/(1-D)/ Ui。为保证导通期间GS电压稳定C值可稍取大些。该电路具有以下优点:

①电路结构简单可靠,具有电气隔离作用。当脉宽变化时,驱动的关断能力不会随着变化。

②该电路只需一个电源,即为单电源工作。隔直电容C的作用可以在关断所驱动的管子时提供一个负压,从而加速了功率管的关断,且有较高的抗干扰能力。

但该电路存在的一个较大缺点是输出电压的幅值会随着占空比的变化而变化。当D 较小时,负向电压小,该电路的抗干扰性变差,且正向电压较高,应该注意使其幅值不超过MOSFET栅极的允许电压。当D大于0.5时驱动电压正向电压小于其负向电压,此时应该注意使其负电压值不超过MOAFET栅极允许电压。所以该电路比较适用于占空比固定或占空比变化范围不大以及占空比小于0.5的场合。

(3)集成芯片UC3724/3725构成的驱动电路 

集成芯片UC3724/3725构成的驱动电路

集成芯片UC3724/3725构成的驱动电路

电路构成如图11 所示。其中UC3724用来产生高频载波信号,载波频率由电容CT和电阻RT决定。一般载波频率小于600kHz,4脚和6脚两端产生高频调制波,经高频小磁环变压器隔离后送到UC3725芯片7、8两脚经UC3725进行调制后得到驱动信号,UC3725内部有一肖特基整流桥同时将7、8脚的高频调制波整流成一直流电压供驱动所需功率。一般来说载波频率越高驱动延时越小,但太高抗干扰变差;隔离变压器磁化电感越大磁化电流越小,UC3724发热越少,但太大使匝数增多导致寄生参数影响变大,同样会使抗干扰能力降低。根据实验数据得出:对于开关频率小于100kHz的信号一般取(400~500)kHz载波频率较好,变压器选用较高磁导如5K、7K等高频环形磁芯,其原边磁化电感小于约1毫亨左右为好。这种驱动电路仅适合于信号频率小于100kHz的场合,因信号频率相对载波频率太高的话,相对延时太多,且所需驱动功率增大,UC3724和UC3725芯片发热温升较高,故100kHz以上开关频率仅对较小极电容的MOSFET才可以。对于1kVA左右开关频率小于100kHz的场合,它是一种良好的驱动电路。该电路具有以下特点:单电源工作,控制信号与驱动实现隔离,结构简单尺寸较小,尤其适用于占空比变化不确定或信号频率也变化的场合。

5.功率MOSFE发展与研发 

MOSFET漏源之间的电流通过一个沟道(CHANNEL)上的栅(GATE)来控制。按MOSFET的原意,MOS代表金属(METAL)-氧化物(OXIDE)-半导体(SEMICONDUCTOR),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)。FET (FIELDEFFECTTRANSISTOR场效应晶体管)的名字也由此而来。然而我HEXFET中的栅极并不是金属做的,而是用多晶硅(POLY)来做栅极,这也就是图中所注明的硅栅极(SILICONGATE)。IR在1978年时是用金属做栅极的,1979年的GEN-1HEXFET是世界上第一个采用多晶硅栅极的多原胞型功率MOSFET。

IR 功率MOSFET的基本结构中每一个六角形是一个MOSFET的原胞(CELL)。正因为原胞是六角形的(HEXANGULAR),因而IR常把它称为 HEXFET。功率MOSFET通常由许多个MOSFET原胞组成。已风行了十余年的IR第三代(GEN-3)HEXFET每平方厘米约有18万个原胞,目前世界上密度最高的IR第八代(GEN-8)HEXFET每平方厘米已有1740万个原胞。这就完全可以理解,现代功率半导体器件的精细工艺已和微电子电路相当。新一代功率器件的制造技术已进入亚微米时代。

作为功率MOSFET 来说,有两项参数是最重要的。一个是RDS(ON),即通态时的漏源电阻。另一个是QG,即栅极电荷,实际即栅极电容。栅极电容细分起来可分成好几个部分,与器件的外特性输入与输出电容也有较复杂的关系。除此之外有些瞬态参数也需要很好考虑,这些我们留到后面再谈。

5.1通态漏源电阻RDS(ON)的降低 

为降低RDS(ON),先要分析一下RDS(ON)是由哪些部分组成。这些电阻主要包括:

5.1.1 RCH:沟道电阻,即栅极下沟道的电阻。 

5.1.2 RJ:JFET电阻,即把各原胞的P-基区(P-BASE)所夹住的那部分看为JEFT。JEFT是结型场效应晶体管(JUNCTIONFET)的简称。结型场效应管是以PN结上的电场来控制所夹沟



评论


相关推荐

技术专区

关闭