新闻中心

EEPW首页>电源与新能源>设计应用> 关于智能型手机电源管理系统的设计与应用

关于智能型手机电源管理系统的设计与应用

作者: 时间:2012-03-12 来源:网络 收藏
于正常工作模式,则从输出功率与时间的关系图可看出,将动态电压调整技术用于睡眠模式,电池寿命会最多延长9 个小时。

  离散解决方案

  (图四)是利用离散组件实作的管理系统,电池电压限制为3.3V。

  图四利用离散组件实作的管理系统

  在这个解决方案中,就算锂离子电池下降至3.3V 左右,在100%负载周期模式下工作的高效率TPS62200降压转换器仍能提供3.3V 的I/O电压。上述所有零件都采用SOT-23 封装,除了bq24020 电池充电组件、TPS61020 升压转换器以及TPS61042 白光二极管驱动组件之外,它们是采用3×3 平方厘米的QFN 封装。TPS61040 和TPS61042 还内建上端FET 晶体管,每颗组件只需要一个外接二极管。bq24020、TPS622xx、TPS61020 和线性稳压器组件全都内建FET 晶体管,功率放大器和中央处理器采用的动态电压调整技术可以提高每颗零件的效率,进而协助降低功耗。

  整合解决方案

  最新制程技术使得工程师更容易结合、迅速修改以及/或是利用现有的离散组件设计,以便提供不同整合程度的半导体芯片,例如通用的双通道交换式转换器和电源拒斥比很高而噪声很低的双信道线性稳压器、特殊应用白光二极管的电源供应以及行动、PDA 和数字相机的多电源管理解决方案,这些产品都已开始供应。专门支持终端设备的电源组件则会内建各种外围,其范围从行动的响铃器和蜂鸣器到PDA 的通用I/O 接脚,例如图四整合解决方案所使用的TPS65010 就是这类组件。

 图五整合式解决方案

  在此解决方案中,3.3V I/O 电源是由SEPIC 转换器提供,它让应用系统能充份利用锂离子电池电力,直到电池电压降至最低水平(大约2.7V)。和离散解决方案一样,稳压器输出也来自3.3V 输入电源,以便提高工作效率。TPS65010 采用48 只接脚QFN 封装,这些组件都内建FET 晶体管。TPS61130 SEPIC 转换器采用4×4 平方厘米QFN 封装,并且内建FET 晶体管,最高达到90%以上效率,TPS5100 则是三通道输出控制器,专门用来提供电源给显示器。功率放大器和中央处理器电源使用的动态电压调整技术可以改善每颗零件的效率,进而协助降低功耗。

  离散或整合?

  如何在离散或整合解决方案之间做出抉择?一般说来,整合组件的成本会低于同样等级的多颗离散零件;除此之外,如同(图六)的电路板布局所示,相较于执行同样功能的多颗离散零件,TPS65010 以及与其搭配的被动零件只需较少的电路板空间,这主要是因为离散零件之间需要额外空间来容纳讯号线路。由于TPS65010 还包含原来由离散零件提供的其它功能,例如电源供应顺序、振动器和二极管驱动组件,因此整合解决方案可以节省更多电路板面积。

 图六TPS65010 与同等级离散解决方案的电路板布比较

  整合组件过去主要支持特殊应用,弹性也不是很高,因此在设计流程后期,它们就无法再进行重大的设计变更。然而新的制程技术,包括支持可程序输出电压以及封装后调整的整合式EEPROM,却使得工程师能以更低成本,更简单快速的对现有组件(也就是不同固定输出电压的组件)重复进行简单修改。另一方面,整合组件的供货商通常只有一家,这可能迫使厂商必须采用离散解决方案。

  未来挑战

  消费者想要操作时间更长的智能型手机,新发展的半导体制程技术已能减少泄漏电流和阻抗(有时透过铜覆盖层),使得FET 晶体管的静态电流更低,导通阻抗也变得更小。然而不同于持续进步中的半导体技术,电池技术却没有任何重大进展,无法在不增加电池体积的情形下延长供电时间。

  电容器技术的某些进展使得充电电池和电容器之间的界限日益模糊,许多可携式产品已开始使用高能量超级电容器(super capacitor),做为消费者更换电池时的暂时电力来源;另外,高能量暨高功率的超高电容器(ultra capacitor)还能在短时间内提供很大电流,让电池不必瞬间供应庞大电力,可以延长电池的使用时间。这些超高电容器会整合至电池封装内,并在系统电力需求不太高时,利用微小电流充电。燃料电池近来是热门话题,但由于外形包装尚未标准化,使得燃料电池的广泛应用受到影响,商业化过程也不太顺利。燃料电池的输出瞬时响应也很糟糕,因此至少在最初阶段,燃料电池只会做为普通电池的补强装置,无法完全取代普通电池。

  消费者还希望产品的体积更小,功能更加强大,创新的电源管理组件设计以及封装和制程技术的进步都能帮助实现此目标。日益精密的制程技术可以制造出越来越小的FET 晶体管,让晶粒和封装的体积更小,工作电压更低,闸极电容更少,使得晶体管的开关速度更快

  —对于以电感为基础的交换式电源供应,更快的开关速度意味着更小的电感。新封装技术则能在更小的封装中容纳更多功能,并且承受更大的功耗,例如内建FET 开关的锂离子电池线性充电组件bq24010 就采用3×3 平方厘米的QFN 封装,它在普通室温环境下,最高能承受1.5W 功耗。

  要在较低的工作电压下提供更强大功能,电源管理单元和低噪声布局的容忍要求通常也会变的更严格,例如系统若要求1.2V 电源的误差小于±3%,就表示输出电压变动幅度不能超过±36mV;相形之下,使用3.3V 电源就表示在同样的±3%误差限制下,它能容忍的电压变动高达±99mV。由于电源电压不断降低,未来几年内对于误差更小、电流更大、效率更高和电磁干扰极低的直流电源转换器的需求将会增加。除此之外,随着封装缩小,可供散热的面积也会减少,让这些高功耗组件的热管理继续成为困难挑战。

  整合的力量

  本文介绍的电源解决方案使用不同整合程度的电源组件。把部份或全部的模拟电源组件和基频处理器等数字零件整合在一起会带来许多优点,包括节省更多的电路板面积,并且降低总成本。复杂电子系统的每个部份都有着不同的需求,这是过去实现更高阶数字和模拟零件整合的障碍之一,例如数字基频单元需要高密度制程以支持数字讯号处理,模拟基频和电源功能需要电压更高的组件;射频单元,特别是锁相回路,则需要最适合支持高频操作的BiCMOS 组件。传统上,制程发展是由数字设计人员负责管理,他们通常只会推动高密度制程发展,电路若需要高电压组件,就必须采用不同制程,这表示他们需要独立的数字组件。半导体厂商不但开始发展「最小闸极长度」更短的BiCMOS 制程,以便提供很高的组件密度和工作速度,还有更高电压的汲极延伸型组件(drain extended devices),它们已用于更多的模拟和电源应用。包括电源管理在内的许多模拟和数字功能最后都会整合成单颗芯片。

  结论

  不同程度的组件整合正在简化可携式电源设计,尤其是可携式产品的系统设计人员,他们不必再担心组件的电源需求管理,整合程度不同的电源管理组件可以帮助他们让电池提供最长供电时间,同时将电路板面积和成本减至最少。

超级电容器相关文章:超级电容器原理


蜂鸣器相关文章:蜂鸣器原理

上一页 1 2 下一页

评论


相关推荐

技术专区

关闭