新闻中心

EEPW首页>电源与新能源>设计应用> 航天器大功率DC-DC变换器的热仿真分析

航天器大功率DC-DC变换器的热仿真分析

作者: 时间:2011-09-12 来源:网络 收藏
件应用于实际的设计分析中。

航天器大功率DC-DC变换器热仿真分析

  3.2 热耗计算与热耗分布

大功率功率变换电路的热耗主要由功率MOSFET管和变压器承担,控制电路的热耗主要是由芯片产生,输出整流电路的热耗主要由输出整流二极管承担。

  理论上可以通过测量电流电压来计算电子元器件的发热功率,从获得而热耗,但实际操作起来比较困难,尤其是在复杂电路中对电流值进行测量。通常的解决方法是通过某些电路仿真软件,比如Pspice或saber来仿真出电功耗,但电功耗是温度的函数,目前大部分电路仿真软件对温度的考虑仍不充分,而且并不是所有的电功耗都转化为热功耗,磁损耗、电磁辐射损耗对热耗计算也不容忽视。通过设计人员分析及仿真而获得的热耗计算值与热耗分布情况,很大程度上决定了热仿真分析数据的可信度。

  3.3 边界条件的确定及热参数的选取

  传热有辐射、对流和传导三种方式。在空间应用中,基本上不存在对流传热这种形式,仅考查热传导及辐射。大功率产品底板与温度为50℃的热沉密贴,温度恒定为50℃,发热元件功耗加在元件模型或用来模拟芯片的热源上,周围环境为真空。

  热仿真分析中使用的热参数的选取主要指用于计算热阻的导热系数λ的选取。

大功率产品热仿真分析的材料导热系数的选取见表3.3。

  在做热仿真时,用等效导热系数λeq表示PCB板及元件的导热系数。

  PCB板的等效导热系数λeq根据PCB板各部分质量分数、体积分数计算。PCB板一般由绝缘体(如FR4)和铜经过加热和加压制作而成,铜的作用是导电和导热。FR4的导热系数一般为0.35W/(m?K),铜的导热系数为385.1W/(m?K),故铜的含量是影响导热的重要因素。多层PCB板断面结构如图3.3所示。

  等效导热系数热参数的选取按式(1)式计算:

航天器大功率DC-DC变换器热仿真分析

  其中i层的导体剩余率:对铜箔层是铜箔的剩余率,对绝缘层,其剩余率近似为1。

  元件的等效导热系数λeq由封装材料、引脚材料、安装材料等导热系数组成,通过等效热阻公式计算。将元件从结点至印制电路板的传热看作一维导热。根据元件不同的安装方式,可以建立不同类型的电热模拟热路图,按(2)式等效热阻公式计算等效导热系数。

航天器大功率DC-DC变换器热仿真分析

  其中:δ—沿导热方向的等效厚度;S—与传热路径垂直的等效导热面积;Rtot—元件电热模拟热路图的总热阻。

  3.4 热仿真建模

  建立一个合理的热仿真模型,是保证热仿真分析结果精确的前提。

  对于主要热耗器件功率MOSFET管、整流管,安装于功率铝基板上,均选用SMD-1封装,封装形式见图3.4.1。采取的安装方式为将功率MOSFET管焊接于铝基板上通过导热硅脂与产品铝外壳底面紧密接触,铝外壳底面与温控热沉紧密接触,实现传导散热,结构见图3.4.2。

航天器大功率DC-DC变换器热仿真分析

  对于航天器大功率DC-DC变换器产品建立计算物理模型,考虑到计算网格划分及热传导与热辐射分析计算的可行性对模型进行一定的简化。印制电路板(PCB板)导热系数按等效导热系数计算;忽略对热影响较小的导线;各结构表面为灰体,发射率和吸收率与波长无关,发射率(ε)=吸收率(α);各结构表面为漫反射面,反射率与射入/射出的方向无关;各结构表面是热辐射不透明的,可以忽略透射率。

  航天器大功率DC-DC变换器产品热仿真模型由板(PLATE)、柱体(PRISM等)、印制电路板(PCB)、面(FACE)、机壳(CABINET)、块(BLOCK)、源(SOURCE)等构成。主要为板结构(PLATE)及块(BLOCK)结构。

  简化后所建的计算物理模型如图3.4.3、图3.4.4、图3.4.5所示。

航天器大功率DC-DC变换器热仿真分析

  3.5 热仿真计算方法

  Icepak是一个专业的电子设备热分析软件,它能够解决系统级、部件级、封装级的热分析问题。它采用非结构化网格,能够针对复杂的几何外形生成三维四面体、六面体的非结构化网格,求解采用有限体积法,以及Fluent求解器,保证工程问题的计算精度。Icepak软件求解三个控制方程:质量守恒方程、动量守恒方程、能量守恒方程。由于在空间环境下传热方式主要是热传导和热辐射,不考虑对流方式,故只计算温度场不计算流场,仅考查能量方程的收敛即可。

  在导热现象中,单位时间内通过给定截面的热量,正比例于垂直于该截面方向上的温度变化率和截面面积,而热量传递的方向则与温度升高的方向相反。即是导热基本定律,其数学表达式为:

航天器大功率DC-DC变换器热仿真分析

  式中:φ指单位时间内通过单位面积传递的热量,x是垂直于面积A的坐标轴。

  ?t/?x是物体温度沿x方向的变化率,式中负号表示热量传递的方向指向温度降低的方向。

  在真空中,物体辐射能力决定于物体的材料特性、表面状况(如颜色、粗糙度等)、表面积大小及表面温度等。物体表面颜色越深,越粗糙,温度越高,辐射能力越强。Icepak中研究的辐射是面对面的辐射,从面1(温度为T1)到面2(温度为T2)的辐射传热量由下式给出:

航天器大功率DC-DC变换器热仿真分析

  3.6 热仿真计算

  航天器大功率DC-DC变换器划分网格类型为非结构化六面体网格。航天器大功率DC-DC变换器计算物理模型网格见图3.6.1.1、图3.6.1.2。

航天器大功率DC-DC变换器热仿真分析

  Icepak软件求解能量方程迭代求解残差见图3.6.1.3。求热仿真温度云图见图3.6.1.4、图3.6.1.5、图3.6.1.6、图3.6.1.7。

航天器大功率DC-DC变换器热仿真分析

  根据热仿真的结果可获得主要发热元器件结温、壳温或热点温度的最高值的仿真数据。其中,低功耗元器件的温度近似取器件附近的板温最高值。

  4 航天器大功率DC-DC变换器热仿真过程总结

  利用Icepak软件强大的热分析功能,可以使电子产品热设计工作大为改观。热仿真的结果需与模拟空间环境下获得的实测温度相互校验及比较,以完善对产品散热情况的真实逼近,反馈



评论


相关推荐

技术专区

关闭