新闻中心

EEPW首页>嵌入式系统>设计应用> 总线式车身控制系统的规则化建模方法

总线式车身控制系统的规则化建模方法

作者: 时间:2012-11-16 来源:网络 收藏



从以上的分析可以看出,用有限自动机模型对进行建模,系统的状态数存在状态组合复杂性问题。另外,用有限自动机进行建模,在系统所处的每1个状态上,任何时刻最多只执行1个操作,即只能描述顺序系统,而无并发描述能力,但中存在大量并发事件和并发行为。

针对用有限自动机模型对进行建模所存在的问题,作者提出一种新的车身控制系统的建模和设计方法―规则化描述方法。

规则化描述方法引入分层建模机制,将组成系统的对象分解为多层,建立系统对象的树状层次模型,用逻辑规则表达式描述系统对象之间的逻辑控制关系,用消息来传递控制关系。系统的控制任务被划分为多个子任务,分布到组成系统的各层对象中,从而有效地减小系统控制的复杂性。用消息机制可方便地实现对并发事件和并发行为的处理。

四、分层建模机制

采用规则化描述方法对车身控制系统进行建模,为降低系统设计的复杂性,将系统对象分解为部件和接口两层。将系统的对象按照组成关系进行分为多个子空间。对系统的划分遵循“高内聚、低耦合”的原则,从而有效降低控制的复杂性。系统的控制任务被划分为多个子任务,分布到组成系统的各层对象中。高层对象充当管理器的角色,协调系统各个组成部分之间的控制任务;低层是传感器和执行器等,直接与外界进行交互,传感器实时感知环境信息并递交给高层对象,执行器主要用来把控制器的指令变换为实际的物理动作并作用于环境。系统各层对象之间存在着逻辑控制关系,对象之间的逻辑控制关系通过消息进行传递,由低层发送到高层的是通告消息,由高层发送到低层的是控制(命令)消息。

车身控制系统由多个部件组成,每个部件包含一个或多个接口,形成如图1所示的树状层次模型。

其中部件是对系统中每个在功能上相对独立的器件的逻辑抽象,接口是对控制单元I/O口的抽象。例如:汽车的前照灯由左右2只组成,在非故障情况下它们始终是同亮同灭,便可在逻辑上将其定义为“前照灯”一个部件;前照灯又有远光、近光、开关等正常状态和开路、短路等故障状态。部件以及接口之间存在着逻辑控制关系,包括部件与部件之间、部件与接口之间、接口与接口之间的逻辑关系,将这种逻辑关系采用形式化的逻辑规则表达式来描述。

五、逻辑控制关系的规则描述

车身控制系统的状态由组成系统的所有部件和接口的状态的集合决定,事件引发系统状态变化,也即导致部件和接口的状态改变,如何改变和变化的过程由部件和接口的逻辑控制关系决定。逻辑控制关系由逻辑规则表达式描述,系统状态的变化体现为逻辑控制关系以消息的方式在部件和接口之间进行传递(当逻辑控制关系所涉及的2个部件位于不同的控制单元中时,控制消息通过CAN进行传送),并触发相应部件和接口的状态改变。

逻辑规则表达式,简称规则式,是对部件和接口的逻辑关系的形式化表示。逻辑规则表达式可以看作为ECA规则的简化。一条ECA规则可表示为




式中E、C、A分别为规则的事件、条件和动作;P为描述规则行为或状态的附加性质。

ECA规则的职能是:当规则事件发生时,系统实时地或在规定时刻检查规则的条件,如满足则执行规则的动作。

车身控制系统中的事件由用户操作或传感器检测触发,并引发相应器件状态的变化,因此事件在表达式中也可以作为条件进行处理,从而可以使表达式得到简化。
采用Backus Naur范式语法表示方法,给出逻辑规则表达式的形式化定义如下。
定义1(逻辑规则表达式)

逻辑规则表达式::=左件→右件

左件::=因子|因子左件

右件::=因子|因子右件

即逻辑规则表达式的一般形式为

因子因子⋯因子→因子因子⋯因子

表达式中符号“→”左边的部分称为逻辑规则表达式的左件,其右边的部分称为逻辑规则表达式的右件。左件和右件均由因子组成,当因子不止1个时,中间用“”相连,表示“逻辑与”。左件因子是条件因子,右件因子是响应因子。

定义1给出逻辑规则表达式的语法形式,语义是:如果左件为真,即左件中所有的条件因子均为真,也即条件符合,则执行右件,即执行各响应因子。


评论


技术专区

关闭