新闻中心

EEPW首页>嵌入式系统>设计应用> 现场总线技术在电厂的应用思考

现场总线技术在电厂的应用思考

作者: 时间:2012-07-23 来源:网络 收藏

3. 生产过程的控制特点
的生产包含了以下几个主要工艺过程:燃料系统(煤炭和燃油/气的运输及贮存)、热力系统及锅炉和汽轮机发电机组(将燃料的化学能转变成热能、热能将水变成蒸汽、蒸汽热能在汽轮机中转变成机械能、再转变为电能)、除渣出灰系统(燃烧物的固体废弃物处理)、脱硫系统(大气排放物的处理)、水处理系统(含净水、锅炉补给水、废水、凝结水精处理、化学取样和加药等)、发配电系统(含厂用电系统、升压站等)。由此可以看出,电力生产是一个极其复杂的工业过程,它涵盖了工厂自动化和过程自动化的内容。在传统的控制系统模式中,主厂房区域热力生产过程通常采用DCS作为主要的控制系统,其他辅助系统则采用以PLC为核心控制系统。由于现场级设备主要采用传统的模拟量和开关量信号,生产过程的监控只能到达I/O子系统。
在近几年的电力建设过程中,电力生产企业的信息化管理引起了广泛的重视,投入了大量的资金构建辅助控制系统网络、电厂实时监控系统(SIS)和电厂信息管理系统(MIS),而对于现场级的设备依然采用传统的装置和方式接入控制系统I/O子系统。这对于以预测性设备维护和设备管理为预期目标的信息化建设,无疑是“无源之水”。因此解决电厂“信息盲区”的根本出路是应用支持的智能现场设备。
4.应用技术存在的问题
尽管技术具有一系列的特点和诱人的优越性,尽管建设数字化和信息化电厂的呼声越来越高,但在电力设计院和建设单位尝试使用现场总线技术的工程屈指可数。主要的应用障碍在一些文献中已有分析,如:
(1)现场总线标准多,用户选择无所适从。
(2)支持现场总线标准的智能现场设备的规格和品种较少,支持总线标准的国产设备更少,尤其是针对电厂开发的智能设备,不能满足电厂各专业的需要。
(3)支持现场总线标准的智能现场设备价格较高。尽管基于现场总线技术的控制系统软硬件费用与DCS相比持平或略高,但FCS对于控制系统的设计、建造、调试直至运行、维护的整个项目同DCS相比确实要低得多。而这种效益往往是投资方和建设单位在项目规划阶段可能不会引起足够重视的问题。
(4)连接现场总线设备底层的网络不支持冗余结构。
除了上述这些应用障碍之外,笔者以为还有以下一些制约因素限制了现场总线技术在电厂的应用。
(1)现有电厂的基建模式。现在电厂控制设备的采购大多是由设计院编制设备规范书,由建设单位组织采购,也有一些设备由施工单位采购,还有的控制装置由主机厂配套或分包。这种设备的采购方式难以保证按照统一的总线标准供货。根据现在的实际情况,即使规范书中的技术条件十分明确,往往现场到货却是另一回事。不同的现场总线标准是不兼容的,结果化了钱却起不到效果。
(2)在设计院内部,自动控制涉及电气专业、热控专业甚至系统专业。这些专业分管的系统和现场设备各不相同。如在主厂房内,泵与风机的开关站(SWITCHGEAR)和PC、MCC设备归电气管,电动门MCC归热控管。成百个设备在设计和订货时要求电气和热控采用统一的现场总线标准,难度可想而知。
(3)投资方、建设单位、施工单位甚至设计院的技术人员对现场总线技术缺乏深入的了解。现场总线是一个新型控制系统,作为现场总线应用的技术人员,尤其是设计院的热控设计人员如果还停留在对DCS的认识水平上是无法设计合理的现场总线控制系统,也不可能发挥现场总线的优势,甚至不能保证现场总线控制系统的正常工作。比如,现场总线FF和Profibus-PA支持总线供电,但对于挂接的现场设备数量和总线的通信距离均有限制,还要设置合适的终端装置,因此必须熟悉掌握现场总线及智能设备的特性,才能保证总线设计的正确性。再如,只有FF总线协议支持建立控制策略的编程语言,也就是说,只有支持FF总线协议的智能设备如阀门定位器可以当作调节器使用,在自身回路执行PID功能,控制功能分散到现场设备,系统功能和故障更加分散,也进一步降低了中央控制器的负载,改善了系统的性能,中央控制器的数量也相应减少了。但Profibus技术没有控制策略的编程语言,也即支持Profibus-PA的现场设备不能实现控制策略,控制必须由中央控制器完成。然而,支持Profibus的产品系列比FF要齐全、广泛。
这些特性都必须是在选择现场总线标准时设计人员所必须要考虑的。
(4)设计观念的限制。我们一直强调在电厂应用的控制系统必须已有在2台同类型机组3年以上的成功应用业绩。需知现场总线技术已发展了十多年,支持现场总线技术的智能设备已经基本成熟,且在石化等行业得到了广泛应用。由美国电力研究院主持编制的核电厂用户要求文件UDR中已将现场总线作为核电厂控制系统的选项,这对我们在火力发电厂应用现场总线技术应有所启示。
(5)缺乏合理的设计周期。现在大多数电厂的工程设计周期被大大压缩,因此从设计院来讲能按常规方案完成设计已经是十分紧张。
(6)对于设计人员缺乏创新的机制和动力。在工程中应用新技术总会有一定的风险,这需要设计人员投入大量的精力进行调研和方案论证,但现实往往是对应用新技术的研究没有额外的投入,尤其对新技术的成功应用也并无特别的奖励机制。
5.电厂应用现场总线技术目标和对策
尽管到目前为止市场和工程实践中尚缺乏真正意义上的现场总线控制系统供电厂使用,但不代表我们在现场总线技术方面无所作为。只要我们认清应用现场总线技术的真正目的,克服制约现场总线技术在电厂的应用障碍,我们就能让现场总线技术为电厂自动化和信息化发挥积极的贡献。
首先,我们必须在电厂自动化和信息化方案的规划和设计过程中,避免陷入为现场总线而现场总线的误区。应将降低电厂和以合理的投资建设企业的信息化平台和企业管理体系作为投资方、建设单位和设计院共同追求的目标。基于这样的原则和指导思想,我们将会实事求是地研究现有控制技术、计算机技术和通信技术带给我们的自动化和信息化产品,构建电厂监控和信息管理系统。
在电厂自动化和信息化的规划过程中,依然要结合电厂各工艺和生产过程的特点,采用最合适的现场总线标准和检测、控制装置。不应强求在全厂统一应用一种现场总线标准,全厂统一为一种现场总线标准既无可能、也无必要。在监控层和信息管理层,以太网和OPC协议、交换机、网关等工业IT技术已经提供了不同网络之间的互联技术。
不应过分强调在工程使用的是FCS,还是DCS或PLC+现场总线,只要符合上述原则,就是最合适的控制系统。用FCS取代DCS和PLC系统的争论也无实质性意义。
深入了解现有现场总线控制系统之后,我们就会发现,除了FF总线现场智能设备可以实现部分现场控制策略以外,逻辑控制还依赖于主站或中央控制器,其他总线系统均还采用中央控制器。虽然这些中央控制器可以小型化、现场化布置,但依然是需要集中运算和处理(有些场合中央控制器可以省去I/O处理,控制器也需要冗余设置)。从现场总线控制系统总体结构上分析,依然类似DCS的结构分层,只是网络协议更开放。系统的集成方式在目前也不会有重大的改变,我们似乎在近期不可能完全脱离主流DCS厂家的产品,完全由设计院或工程公司用市场主流或非主流DCS厂家的产品去集成电厂的控制系统。当然在这个过程中,笔者不否认,设计院在设计模式和设计深度上作出重大转变之后,与主流DCS或其他型式的控制系统供应商紧密合作,像石化行业的设计院一样,承担更大范围的工作内容和开展DCS或现场总线控制系统的深度设计。就如早期控制系统运用组装组件仪表的年代,设计院就承担了整个电厂控制系统的配置和集成,只不过随着DCS和PLC的应用,设计院在这方面的能力已衰退殆尽。
以下有几点想法提出来和大家讨论:
(1)投资方和建设方在使用现场总线技术方面起关键作用。没有他们的支持,设计院所起的作用是有限的。因为涉及项目的投资和技术风险。设计院自动化设计人员应在现场总线技术的应用中起领先和推动作用。但设计院应对应用现场总线技术作出透彻的技术分析报告,讲清应用现场总线的利弊和投资估算,提出切实的项目实施计划和风险应对方案。
(2)设计院在应用现场总线技术 方面设计人员要有创新意识,管理层要为设计人员营造设计创新条件和环境。要解决热控和电气两个专业在控制系统规划上各自为政的现状,要充分重视全厂自动化和信息化方案的总体规划,必要的时候对两个专业的分工要进行适当的整合。在应用现场总线技术方面,一些电力设计院已进行了有益的尝试,并积累了宝贵的设计和应用经验,如山东莱城电厂、江阴夏港电厂、云南宣威电厂、贵州纳雍电厂、浙江宁海电厂、山东威海电厂等。在控制系统招标书编制阶段,要广泛了解主流和非主流DCS产品支持现场总线的能力和解决方案,并组织有关专家进行必要的论证。无论主机招标、辅机招标或辅助系统招标以及DCS、PLC系统的招标,必须把支持应用现场标准的产品要求作为必要条件予以明确。
(3)投资方、建设单位对于设计院采用现场总线技术的设计方案,须给予足够的设计周期,并在技术方案论证和产品设计选型方面给予必要的支持。在确定工程采用某种类型的总线标准后,设计院在总线产品方面应有更多的自主权。因为总线产品的选型需要供应商更为详细的设计配合,列入详尽的规格和规范以及参数和选项,而不似现在只允许设计院开列检测和控制装置的工艺参数要求,而不开列具体型号和供应商的做法。建设单位可以改变以往控制装置由系统集成商配套的做法,各辅助系统采用的PLC可以确定合适的某两种总线标准集中招标采购,以利于现场设备的总线标准统一。
(4)由于现场总线不同于常规设计,设计院自动化专业的深度和难度均有所提高,因而相应的设计费用和设计定额也要作出合理的调整。
(5)自动化设计人员要努力提高自己的业务水平,要改变目前在常规DCS和PLC系统设计方面的习惯做法,熟练掌握和应用现场总线技术和产品,这需要设计院各级领导尤其是部门领导重视和加强对设计人员的技术培训。设计院现在几乎不参与DCS或PLC系统施工图阶段的网络构建与配置工作,只负责提供PID、初步的I/O清册,最终完成DCS或PLC的外部接线图。各设计院的深度与此可能有所不同,但总体上讲没有深入到DCS和PLC系统的内部。这样做的后果就是,设计院对全厂的控制策略掌握不透彻,系统组态方式和功能分布是否合理了解不深入。因此设计院对于系统优化、网络配置、功能分配的发言权越来越弱。笔者以为,要扭转这种局面,设计院应抓住应用现场总线技术的机遇,加深设计深度。这种深度主要体现在以下几个内容:PID图、仪表位置布置图、调节框图和逻辑图、设备规范和数据表、接线图、电源配置图等。
当采用FF现场总线时,PID图工作显得尤其重要,现有的PID图深度要提高,因为在采用FF现场总线标准的情况下,需要通过PID规划系统和设备的控制策略。在PID图的设计中,需引入区域设计的概念。为了达到调节功能和逻辑的可靠和完整,通常一个回路的所有I/O应处于相同的区域,每个区域可以有2~6个回路。采用PID应确保所有与区域回路有关的点都在那个区域内。不仅如此,还要学习和掌握现场总线的接线、布线技术和计算方法。因为现场总线的接线不同于常规DCS和PLC控制系统的接线。现场总线区域设计将取代传统的I/O分配连线。为了准确估算现场总线网络电缆的长度、规划合理的网络连接方式,避免现场信号的往返,影响系统响应速度和控制性能,需要依靠现场仪表和控制装置的布置图。仪表位置布置图的作用是确定网络主干和分支以及接线盒的位置,这才能保证总线安装符合区域长度、分支长度和终端位置的要求,实现现场总线的成功安装和工作。此外,现场总线网络存在三种拓朴结构:总线带分支结构、树型或分支或鸡爪型结构、雏菊链拓朴结构。不同结构适用的场合不同,要避免使用雏菊链拓朴结构,它似乎能降低电缆和安装费用,但对系统维护和可靠性极为不利。作为设计人员对此均要了解和掌握。电源配置具有类似的问题,不再赘述。


评论


相关推荐

技术专区

关闭