新闻中心

EEPW首页>嵌入式系统>设计应用> 基于Flash存储器的嵌入式文件系统设计

基于Flash存储器的嵌入式文件系统设计

作者: 时间:2012-04-06 来源:网络 收藏




首先,将未保存于队列中的节点保存,清未保存队列。 然后将块队列中的所有文件节点转移到空簇中,同时将文件路径上的各级目录加入到未存盘队列中。对于块队列中的目录节点,则将它和其路径上的各级目录加入未存盘队列中,按照未保存队列的顺序,依次将各个目录写入中,最后写入最新的索引节点。因为目录节点加入未存盘队列时,按照目录层数的大小排列,所以按照未保存队列的顺序写入时,可以保证当一个目录要被写入时,它的所有下级目录已被写入中。 所有下级目录在Flash 中的存储地址都已确定。当该的空间将达到存储上限时,可能会出现特殊情况,即废簇回收时,空簇的空间不足,无法将所有干净簇重写。为此建立了应急机制,先将文件节点内容存在内存中,这时新建一个临时未保存队列,专门保存文件节点,在块擦写完成后,将剩余的文件节点写入新的空簇中,其算法与图7 所示流程大致相同。 但是,一旦在擦写时断电,会导致该块上的所有数据丢失。

断电错误处理机制 

当系统遭遇断电重新启动后,索引节点中的信息会与系统中的状态不符,这时便需要错误处理机制。 错误一般是索引节点中标注的空簇已被写入了数据,错误处理就是将此簇标志为脏簇,并查找下一个空簇重新写入。

多任务处理机制 

允许同时打开多个文件,在多任务操作系统下,为了避免冲突建立了多任务处理机制。系统允许打开的多个文件在内存中同时被编辑修改,但是对Flash 写入操作有限制。 处理方法是设立Flash 写入保护区,在此区中只允许当前正在执行的任务执行Flash 写入操作。 实现Flash 写入保护区的方法是建立一个初始值为1 的信号量,当一个节点需要Flash 写入时,首先申请信号量,完成后再释放信号量。 Flash 写入保护区见图6 、图7。在图6 中,空操作语句是用来对多个文件的保存进行同步。 例如,有文件1 和文件2 需要保存,先将文件1 的内容写入Flash 中,文件1 路径下的目录节点被添加到未保存队列中,再将文件2 的内容写入Flash 中,文件2 路径下的目录节点也被添加到未保存队列中,最后将未保存队列中的所有节点都写入Flash 中。这样,如果同一路径下的两个文件同时存盘,可避免路径下的相同目录节点被写入两次,从而提高了效率。不足之处在于,如果很多文件同时存盘,会导致索引节点在一段时间内都无法写入Flash,有断电丢失的危险。但对于一般系统来说,很少会碰到这种情况。当进行Flash擦写时,在取块队列首节点至索引节点写入完成这段时间内都不允许进行其他Flash的写入操作,这是为了保证数据的完整性,同时也提高了文件系统的稳定性。

无目录文件系统的优化

许多系统设计中虽没有目录管理的要求,但是对执行效率和资源消耗的要求较高。 对于不要求有目录管理的精简文件系统,在设计时也进行了优化。精简文件系统在Flash 中的存储格式与上述设计相同,文件系统中的所有文件信息都保存在索引节点的根目录信息表中。精简文件系统在内存中的映象则要简单很多,只包含索引节点中的信息,包括簇状态表、下一个擦除块、下一个新节点的标号和根目录信息,而不用为每个文件都建立内存中的映象,节省大量的内存空间。 文件的编辑存盘过程简化为:打开文件、编辑、将文件写入Flash 存储器、将修改后的索引节点写入Flash 存储器。擦写则只需通过查询根目录信息表中的各个目录项,将块中的所有文件节点写入空簇即可。在无目录管理的情况下,精简文件系统占用的内存资源可以减少,操作也可便捷,提高了效率。 对于大量只需要按名存取的简单文件管理的小型系统而言,针对Flash 存储器的简单文件系统将占用资源少,执行效率高,有很大的应用价值。

嵌入式文件系统实现及性能分析


该文件系统的实现采用了分层方法,分为3 层4 个部分:应用程序接口、文件系统核心、操作系统调用接口、Flash 存储器驱动,实现结构见图8。


实现平台中RTOS 为μC/OSOII 实时操作系统,CPU 使用三星S4510B作为处理器,Flash 存储器芯片为FUJ ITSU 的29LV160 TE。 针对不同的实时操作系统和Flash 存储器芯片需要实现不同的操作系统接口和Flash 存储器驱动。

针对μC/ OSOII 编写操作系统调用接口,包括5个函数: ①系统调用接口初始化FS_Sys_Interface_Init ( ) ,创建互斥信号量和内存分区; ② Flash 写入关闭FS_Sys_Write_Lock ( ) ,禁止Flash 写入操作,调用μC/OS-II 中OSMutePend ( ) ; ③ Flash写入打开FS_Sys_Write_Unlock ( ) ,重新允许Flash 写入操作,调用μC/OS-II 中OSMutePost() ; ④内存空间申请FS_Sys_Mem_Alloc( ) 和内存空间添加FS_Sys_Mem_Add ( ) , 都调用OSMemGet ( ) 来完成; ⑤内存空间释放FS_Sys_Mem_Free ( ) ,调用OSMemPut ( ) 完成,将申请的内存块全部释放。针对29LV160 TE 这款Flash 存储器芯片,定义一个FlashDef 结构体的全局变量, 用于存储Flash 器件信息,并且编写针对此款Flash 的块擦写函数FS_Device_Sector_Erase ( ) 和数据写入函数FJ FS_Device_Write ( ) 。

完成这两部分的实现后,该系统就可运行调试。 测试应用程序接口(API) 。应该提供的各部分功能,并在突然断电情况下,测试文件系统的恢复情况。无目录管理的精简文件系统的载入,可在2μs内完成,文件写入耗时主要为闪存的等待时间,系统本身只占用不到200 个字节的内存,产生的代码段大小为7 K。完整的文件系统载入时,需要建立内存中映象,耗时根据文件数量的多少而不同,一般为10μs ,产生的代码段大小为11 K。系统写入效率较高,在无目录管理的配置下尤其明显。试验中系统在多次断电的情况下,系统仍能恢复至上次存盘的状态,虽会导致个别文件未更新,但不会导致文件系统崩溃。

结 语

针对Flash 存储器的固有缺陷设计了一种基于Flash 存储器的嵌入式文件系统。 在文件读写时,极大减少了Flash 存储器擦写的次数,提高了效率。 此系统代码精简,运行时占用内存资源少,运行效率高,而且有断电保护,有较高的安全性。

linux操作系统文章专题:linux操作系统详解(linux不再难懂)

上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭