新闻中心

EEPW首页>嵌入式系统>设计应用> 一种自动割草机器人的设计和实现

一种自动割草机器人的设计和实现

作者: 时间:2011-10-18 来源:网络 收藏

3.1 软件总体结构

  主程序主要执行初始化以及的3种行走策略:普通行走的任务;回到基站的任务;执行出站的任务。在外部中断中,外部光电避障、碰撞开关避障和保护部分的信号是主要外部中断的来源,用于实时响应这些异常事件。软件流程图如图6.

  3.2 割草路径规划

  路径规划是指,在具有障碍物的环境中,按照一定的评价标准,寻找一条从起始状态到目标状态的无碰撞路径。本算法中路径规划采用了基于知识的遗传算法,它包含了自然选择和进化的思想,具有很强鲁棒性。机器人整体的运动规划一般又称为路径规划,由于机器人整体看作是一个点或者是一个固定的几何体,自由度比较少,因此路径规划问题相对比较简单。传统的机器人运动规划算法已经能较好地解决路径规划问题。

路径规划的遍历策略是割草机设计中的一个重要环节,涉及到割草机割草的效率。合理的遍历策略可以使在最短的时间内遍历整个割草区域[4].常用的割草策略主要有两种方式:直线运行方式和边界跟踪运行方式[5].两种覆盖区域方式如图7、图8所示。

  采用直线运行时,转向处会有不可避免的重叠路径,使总的运行距离增加;采用边界跟踪的方式时,需要机器人不断地调整进行方向,容易带来误差。针对自动割草机器人以单片机为核心的控制器而言,需要自动割草机器人的运行轨迹尽量简单化和规范化。因此采取直线运行方式遍历子区间,在前向的电子篱笆传感器感应到边界后,割草机器人后退一小段距离,然后以一个轮子为中心,另一个轮子左转(或右转)180°,完成掉头,然后继续前进,下次再碰到边界就向相反的方向旋转180°,这样就可以做到区域的覆盖。

  3.3 割草边界区域的处理方法

  割草机器人在区域的边角处行走是最容易出现问题的时候,不合理的行走策略可能导致割草机器人走出边界。所以要利用割草机器人现有的传感器去选择在区域边角的运行策略。

  经过实验发现,出现越界问题的情况主要有两种。

  (1)割草机到达边界的一个角落,如图9.在这种情况下割草机器人传感器A4(或者A3)首先检测到边界L1的信息,根据直线运行方式就应该先后退再向左转(或向右转)。正常情况下走到这种角落时就应该是先检测到L1,然后后退一段距离,再向右方向转180°。在转弯的过程中,由于L2的存在, A3就会感应到角落的另外一个边界L2,如果没有特别的策略,就会执行先后退一段距离,再向左转180°的策略,这样就很容易走出边界,或者使控制变得混乱。要避免这种情况就需要在软件上做出改动,即在转弯过程中如果有其他传感器检测到边界,就说明已经到了另一个边界角落的位置。最好的处理方法就是原路回转过去,回到原位后再次左转180°,开始从这个区域的顶端到另外一端的循环行走遍历。

  (2)割草机遇到了一个倾斜的边界,如图10.如果没有特殊的策略,A4检测到边界后,就执行转向的策略,这样就会有很大一片的前方区域(区域一)不能遍历到,所以就需要利用右边的A2去解决这个问题。在正常行走时,如果A2首先检测到了边界,则执行先后退、然后左拐一定的角度、最后前进的策略。自动割草机器人就会沿着这根斜线边界不断调整自己的角度前进,而不会漏掉这些区域,适用于边界不是很规则的草地。


  4 系统整体调试

  割草机器人整体调试步骤:(1)单片机控制系统的测试;(2)运动控制系统的调试;(3)各个传感部分的调试;(4)运动控制系统与传感器相结合的整机调试。

  首先单独测试单片机的控制,测试通过后进行运动模块的测试,获取割草机的运动参数。然后进行各个传感模块的测试,其中重点的是电子篱笆、光电避障的测试。在确认各个传感模块工作无误后即可开始进行割草机器人的整体测试以及割草路径规划。最终实现自动割草机器人自动割草、自动充电和雨雪天自动返回基站等功能。

  自动割草机器人系统借鉴了国外的割草机系统的特点,特别加强了安全性和可靠性的设计,实现了更好的控制。从外界获取信息能力来看,多传感器系统保证了获得的外界信息的完整性、有效性,保证了自动割草的正常进行以及意外情况的及时应对。从系统性能方面,采用功耗合理、性能优越的单片机控制系统,保证了性能与成本的兼顾。从功能方面,基本实现了全部割草机器人应有的功能,并且加强了安全性。通过现场的测试结果,割草机器人完全能够胜任坡度不大于15°的草地的割草需求,实现了真正的无人值守自动割草。

光电开关相关文章:光电开关原理
电能表相关文章:电能表原理

上一页 1 2 3 下一页

关键词:自动割草机器人

评论


技术专区

关闭