新闻中心

EEPW首页>汽车电子>设计应用> 方向盘下的玄机:详解可变转向系统

方向盘下的玄机:详解可变转向系统

作者: 时间:2011-03-22 来源:网络 收藏

可变转向比(齿比)转向系统-主动转向系统

代表车型:宝马5系(E60、F10)、丰田新皇冠、雷克萨斯LS460L、奥迪Q5、奔驰新E级

  前面提到的几种“可变”转向,能够改变的仅仅是助力力度,说白了只是能够改变转动时的阻力而已,但是转向比(可简单理解为转动的角度与对应的车轮转动角度的比值)是不可变化的,我们接下来要说到的可变齿比(速比)的转向系统则要先进的多,不仅能够改变转向的助力力度,在不同情况下,转角对应的车轮转动角度也是可以变化的。

  不同厂家对这类系统的叫法可谓五花八门,比如宝马称之为AFS主动转向系统(Active Front Steering,这个缩写与我们熟悉的随动转向大灯缩写是相同的),奥迪将其称之为动态转向系统(Audi Dynamic Steering),雷克萨斯/丰田使用的则是可变齿比转向系统VGRS(Variable Gear Ratio Steering),本田的这类系统名称为VGR,与丰田命名类似,而奔驰的可变转向比系统则以“直接转向系统”命名。虽然功能类似,但是他们使用的技术却是截然不同的。

  简单地说,可变齿比转向系统在技术层面上并不是一个水平的,目前主要有两种方式实现这种功能,一种方式是依靠特殊的齿条实现,原理简单,成本也相对较低,没有过高的技术含量,而另一种就比较复杂,是通过行星齿轮结构和电子系统实现的。由于目前并没有明确的分类,所以我们姑且将它们分为机械式和电子式吧。

机械式可变转向比系统:奥秘在于齿条,原理简单


奔驰的E级、S级都搭载了“直接转向系统”

  奔驰的直接转向系统就是第一种方式的典型代表,它主要是在“齿轮齿条机构”的“齿条”上做文章,通过特殊工艺加工齿距间隙不相等的齿条,这样方向盘转向时,齿轮与齿距不相等的齿条啮合,转向比就会发生变化,中间位置的左右两边齿距较密,齿条在这一范围内的位移较小,在小幅度转向时(例如变线、方向轻微调整时),车辆会显得沉稳,而齿条两侧远端的齿距较疏,在这个范围内,转动方向盘,齿条的相对位移会变大,所以在大幅度转向时(如泊车、掉头等),车轮会变得更加灵活。这种技术除了对齿条的加工工艺要求比较严格之外,并没有多少“高科技”在其中,缺点在于齿比变化范围有限,并且不能灵活变化,而优势也很明显--完全的机械结构,可靠性较高,耐用性好,结构也非常简单。

电子式:科技含量高,仍在进化

  与上面的方式相比,宝马、丰田所使用的可变齿比转向系统明显要先进许多,使用了更复杂的机械结构并且需要与电子系统结合使用。能够更好的实现“低速时轻盈灵敏,高速稳健厚重”的需求,其为车辆行驶带来的便利性和稳定性都是普通的可变助力转向系统和单纯的“机械式”可变齿比转向无法比拟的。

车168车168
以雷克萨斯的VGRS为例,我们可以看到,在不同车速下
车轮转动角度相同,但是对应的方向盘转动角度却是不同的

  接下来,我们就从国内的现款宝马5系(E60)使用的AFS主动转向系统入手,来深入了解一下“可变转向比”实现的过程。从结构上看,这是一套我们前面提到过的servotronic伺服式助力转向机构,其助力力度的变化是依靠图中与液压泵紧连的ECO阀(电控阀)实现,而改变转向比的玄机,就藏在转向器及执行单元的外壳之下。

  我们来看转向器及执行单元的剖视图,这里就是AFS的秘密所在。转向柱被从当中打断,我们将连接方向盘的转向柱一端称为输入轴,将直接连接转向齿轮的一端称为输出轴,二者间通过行星齿轮连接,行星齿轮组的壳体是一个可旋转的蜗轮,能够由电机驱动旋转。这套系统有独立的电子控制单元,根据转向角传感器、左右车轮转速传感器、横向加速度传感器的信号控制电动机的开关及运转方向。

  当系统未通电或者系统发生故障时,电磁锁会在弹簧的作用卡在蜗杆的锁槽内,锁止蜗杆,壳体不可旋转,此时输入轴与输出轴的转速是相同的,传动比不会发生任何变化,此时它只是一套可变助力力度的机械式液压助力转向系统。而当系统通入电流,电磁锁打开,电动机开始旋转时,变化就发生了。当车辆低速行驶时,电动机驱动蜗轮与输入轴同向运转,蜗轮壳体与输入轴的旋转角度相叠加,输出轴的旋转角度便大于输入轴,车轮便能转动更大的角度,我们的转向动作被“放大”,使车辆变得非常灵活,而当车速较高时,我们需要更大的转向比来提供精准沉稳的指向,辅助电机会驱动蜗轮反向旋转,与输入轴的部分旋转角度相抵,最终输出轴的旋转角度会低于输入轴,我们的转向动作被“缩小”。这套AFS系统的转向比可在10:1到18:1之间连续调节。

  丰田在雷克萨斯的诸多车型所使用的VGRS系统也是依靠行星齿轮结构对方向盘的转向动作进行放大或缩小,原理与宝马的AFS系统一致,只是在电机的布置位置和结构的设计上有所差异。我们在这里就不做详尽的介绍了。


丰田的VGRS可变齿比转向系统结构示意

  奥迪所使用的动态转向系统(Audi Dynamic Steering)从原理上来讲依然是运用了叠加的原理,但是使用的结构却与宝马和丰田的系统有着天壤之别,其核心部件是一套以谐波齿轮传动机构为核心的电控系统。大家对于“谐波齿轮”的概念可能都比较陌生,它是利用柔轮、刚轮和波发生器的相对运动,特别是柔轮的可控弹性变形(形状改变)来实现运动和动力传递的(定义来自网络)。


动态转向系统-Audi Dynamic Steering结构图

  改变转向比的原理是谐波传统系统的错齿运动。连着方向盘的输入轴与柔轮(薄型环齿圈)相连,其内有柔性滚珠轴承,中心为电机驱动的椭圆转子,与输出轴相连的是外环面构成的刚轮,在转子被锁止时(电机未通电或发生故障),转向系统转向比保持恒定。而电机驱动中央转子旋转时,会带动柔轮旋转,当转子与柔轮同向旋转时,由于柔轮的齿数比外环刚轮的齿数小,所以刚轮的转动角度便会大于柔轮,使转向角度被放大,而当转子反转时,就能够起到缩小转向角度的作用。

  相比行星齿轮系统,奥迪的动态转向系统使用的谐波齿轮传动结构有诸多优点,首先是结构相对简单,没有过多复杂的齿轮结构,零件数少便于维修。其次是这种结构承载能力高,不娇气,传动比大;同时,它的运转平顺,噪音较低,这点对于看重静音的豪华车型来说非常适合;另外,这种结构传动效率高,且响应速度快,运转精度高。

  当然,宝马和丰田的可变转向技术也一直在进化着,在早期的AFS和VGRS系统上,相匹配的仍然是液压助力机构,在新一代的宝马5系(F10)上,液压助力机构已经被电动助力(EPS)所取代,结构更加简单紧凑,助力力度的输出更加精确,能耗也得到了有效的降低。而且,助力系统能够通过助力电机直接驱动齿条,可以独立于方向盘精确控制车轮转动角度,与泊车雷达和车身电子系统联动,实现了自动泊车的功能,真正解放双手。


新一代宝马5系(F10)上,电动助力转向已经取代了液压助力系统

  与丰田的VGRS系统所匹配的助力转向系统也有所升级。LS460以上的车型所装备的IFS(intelligent front steering)智能前转向系统,使用的就是电动助力转向系统,该系统将可变齿比系统与电动助力设计成了一体,省去了螺旋电缆,结构更加简单紧凑,系统的运行效率也进一步提高。上市不久的新一代皇冠4.3车型使用的也是VGRS+EPS电动助力转向系统的组合。

小结:

  目前来看,可变齿比的转向系统仍然只是少数品牌车型才能够享受到的“高级装备”,相比之下可变助力力度的转向系统要离我们更近一些,普及程度也非常高。眼下,市面上较常见的这几种可变助力的转向系统中,电动助力系统无疑是未来的发展趋势,结构简单紧凑、低成本、低能耗、高精度、高响应速度、便于集成控制、便于功能扩展(如自动泊车)的特性是那些基于液压助力衍生而来的可变助力系统所无法比拟的,尤其在注重“能耗”和“环保”的今天,电动助力系统发展的趋势是不可逆转的,并且未来其可靠性、负载能力也将会进一步提升。

  目前,电动助力转向系统技术已经比较成熟,所以车友们在选车的时候,如果用车条件相对宽松(非赛道用,非越野用,非激烈驾驶用)可以优先考虑使用电动助力转向系统的车型,精准操控与低能耗兼得,何乐而不为呢?


上一页 1 2 下一页

评论


技术专区

关闭