新闻中心

EEPW首页>汽车电子>设计应用> 电动汽车驱动系统中的超级电容原理及应用

电动汽车驱动系统中的超级电容原理及应用

作者: 时间:2010-04-29 来源:网络 收藏

我国从九十年代开始研制超级双电层电容器,与国外先进水平还有一定的差距。据有关资料表明,国内有些单位已经研制出比能量为10Wh/kg、比功率为600W/kg的高能量型及比能量为5Wh/kg、比功率为2500W/kg的高功率型器样品,循环使用次数可达50,000次以上。性能指标已经达到国际先进水平,成本较国际平均价格有大幅度下降。初步具备水平。

在汽车上的

 1、的辅助动力

  汽车频繁的起步、爬坡和制动造成其功率需求曲线的变化很大,在城市工况下更是如此。一辆高性能的的峰值功率与平均功率之比可达16:1。但是这些峰值功率的特点是持续时间一般都比较短,需求的能量并不高。

  对于纯电动、燃料电池和串联混合动力汽车而言,这就意味着:要么汽车动力性不足,要么电压总线上要经常承受大的尖峰电流,这无疑会大大损害电池、燃料电池或其它APU的寿命。

  但如果使用比功率较大的,当瞬时功率需求较大时,由超级电容提供尖峰功率,并且在制动回馈时吸收尖峰功率,那么就可以减轻对辅助电池、燃料电池或其它APU的压力。从而可以大大增加起步、加速时系统的功率输出,而且可以高效地回收大功率的制动能量。这样做还可以提高蓄电池(燃料电池)的使用寿命,改善其放电性能。

  如图2所示为燃料电池汽车的起动过程,由于超级电容在车辆起步时提供瞬时的大功率,从而使汽车起步过程大大加快。


图2 FC+C与FC汽车起步加速性能比较

  除此之外,采用超级电容还能在设计(选择)蓄电池等动力部件时,着重于其比能量和成本等问题,而不用再过多考虑其比功率问题。通过扬长避短,可以实现动力源匹配的最优化。

2、典型驱动结构

  超级电容作为唯一动力源的驱动结构较简单,而且目前技术还不成熟。所以一般都是把超级电容作为辅助动力源,与电池、燃料电池或其它APU系统组成多能源的动力总成来驱动车辆。常见的结构组合形式有:B+C,FC+C,FC+B+C,ICE/G+C等。(其中B代表电池、C代表超级电容、FC代表燃料电池、ICE代表内燃机、G代表发电机),这些结构都属于串联式混合驱动结构。

  如图3所示为超级电容于电动车的典型结构。

图3 超级电容用于电动车的典型驱动结构

  UCMS(超级电容管理系统)实现对超级电容的封装,主要作用是管理每个单体电流的大小,防止电压超过电解质的分解电压而造成损坏,限制单体不均匀性的影响。从而使超级电容组稳定可靠的工作,提高超级电容组整体的效率和寿命。

  超级电容经过一个双向的高频DC/DC后在直流电压总线与电池组进行耦合。为了串联较少的超级电容单体,DC/DC一般为电流型升压变换器,通过控制DC/DC的输出电流来达到控制其输出功率的目的。

  由于超级电容器存储的能量和电压的平方成正比,所以超级电容器由荷电状态所决定的端电压将在一个很宽的范围内变化。例如,如果超级电容器被放电75%,那么电容器的端电压将减少到初始电压的50%。为了控制电容器的能量输入输出,协调超级电容电压和电池电压,必须要使用DC-DC变换器。

3、控制方式

  对于B+C形式的电动汽车而言,主要是控制超级电容的电流,以实现作为主动力源的电池与超级电容的功率分配。应该考虑以下几个方面:蓄电池功率输出应该尽可能保持恒定或平滑;超级电容主要起功率调峰作用,提供道路需求功率减去蓄电池功率外剩余的功率,并且回收制动能量;必须保证蓄电池与超级电容都在各自的安全电压范围内工作;系统的整体效率应该尽可能最大。除了以超级电容电流为控制目标外,也可以把电容电压作为控制目标。

4、示范样车

超级电容器相关文章:超级电容器原理




评论


相关推荐

技术专区

关闭