新闻中心

EEPW首页>手机与无线通信>设计应用> 40Gbit/s高速光传输技术的应用与挑战

40Gbit/s高速光传输技术的应用与挑战

作者: 时间:2010-06-04 来源:网络 收藏

2.1 适应于大PMD光纤的40Gbit/s传输技术

   对于OSNR,色散等40Gbit/s传输限制因素的相继解决,PMD成为目前影响40Gbit/s WDM系统无电中继传输距离的主要限制因素。普通40Gbit/s信号的PMD容限只有大约2~2.5ps,即使不考虑系统其它光学元器件带来的PMD,也只能在PMD系数优于0.1ps/sqrt(km)的光纤中才具有实用价值,在PMD系数优于0.05ps/sqrt(km)的条件下才能发挥长距离传输的优势。这对现网40Gbit/s WDM系统建设的光纤选型要求是非常苛刻的,未来40Gbit/s WDM传输系统面临的最大技术挑战就是如何适用于大PMD光纤。

   在提高40Gbit/s WDM系统PMD首限传输距离方面,业界已经进行了很多努力,提出了各种各样的解决方案,这些方案可以归纳为以下3种:

   (1)PMD补偿方式:其思路是沿用色散补偿的思路,通过一定技术手段跟踪线路PMD的变化并通过引入相反的偏振时延的方式实现PMD补偿;这种方式的思路简单明了,但是由于PMD的动态特性,PMD补偿技术的实现难度远远大于色散补偿技术,目前仅仅在一阶PMD补偿方案取得了一定进展,一些厂商号称推出了商用模块,但是尚无规模商用部署的报道,而且由于原理性缺陷,目前高阶PMD的补偿机理尚无突破;因此,PMD补偿方式目前看来并不成功。

   (2)先进调制码型提高信号PMD容限:其思路是通过复杂的调制码型,在保证40Gbit/s信号比特率不变的情况下降低信号波特率,从而提高信号自身的PMD容限,目前最常见的具备提高PMD容限功能的调制码型主要有RZ-DQPSK和DP-QPSK两种,其中前者仅仅依靠调制码型,而后者还涉及到第3种方式(电域均衡方式);目前,通过RZ-DQPSK码型来提高40Gbit/s信号PMD容限是最广为应用的方式,可以将PMD容限从其它码型的2~2.5ps提升到6~8ps,效果非常明显。

   (3)基于相干接收的电域均衡技术:其原理是利用相干接收后电信号保留的光域相位信息,分离PMD导致的信号畸变,采用特殊电域均衡算法(硬件上通过高速ADC和DSP实现)纠正信号畸变,从而实现消除PMD影响的目的;北电在业界最早推出了商用的解决方案,其DP-QPSK码型40Gbit/s信号的平均PMD容限可以达到25ps,甚至超过了10Gbit/s信号的水平。

   上述3种方式的技术复杂度和使用范围都有一定的区别,笔者认为:

   ●PMD补偿技术由于存在原理性限制,不太可能成为一种规模商用方案。

   ●DQPSK是近期需要重点关注的一种高PMD容限调制码型,它以适中的复杂度实现了6~8ps的平均PMD容限,将40Gbit/s WDM系统对光纤PMD系数要求降低到优于0.2ps/sqrt(km),国内运营商的光缆网络建设时间较晚,大多数地区都能找到满足该要求的光纤光缆。

   ●基于相干接收的电域均衡方案具有更好的性能,可以说是PMD限制的终极解决方案,笔者认为该方案是100Gbit/s WDM传输的解决方案,但是对于40Gbit/s WDM系统来说,还需要根据今后其发展情况和与现行方案的性价比关系来判断。

   2.2 持续降低成本的需求

   目前,40Gbit/s WDM传输系统单位比特×公里的传输成本依旧高于10Gbit/s WDM系统,主要有3个原因:第一,40Gbit/s WDM传输技术自身复杂度较高,研发成本的分摊较多,元器件的成本也较高;第二,40Gbit/s WDM系统的设备出货量还远远小于10Gbit/s WDM系统,无法形成较大的规模效应来有效降低成本;第三,40Gbit/s WDM系统的无电中继传输距离不如10Gbit/s WDM系统,尤其在一些骨干网超长距离应用场景中,更多的OEO再生势必提高40Gbit/s WDM传输系统的建设成本。

   因此,持续降低40Gbit/s WDM系统的成本也应该从上述几个方面入手。首先,运营商需要根据业务需求适度超前建设40Gbit/s WDM系统,只有较大的设备采购量才能形成规模效应,降低单位比特×公里建设成本。其次,40Gbit/s WDM传输系统的技术和性能还需要进一步提高,特别是在无电中继再生距离方面,需要达到甚至超过10Gbit/s WDM系统的水平;上节分析的PMD受限问题也是部分场景40Gbit/s WDM系统成本高的重要原因,PMD问题的有效解决也有助于降低40Gbit/s WDM系统的成本。

   总之,40Gbit/s传输系统在成本方面的挑战是实现低于10Gbit/s WDM系统。随着技术进步节约的OEO再生成本和设备出货量增大带来的规模效应,乐观估计,未来两年左右,40Gbit/s WDM系统的单位比特×公里传输成本接近甚至低于10Gbit/s WDM系统。

   2.3 100Gbit/s传输技术发展的挑战

   虽然40Gbit/s相对于10Gbit/s已经是一个飞跃,但是40Gbit/s远不是高速传输速率的终点。事实上,由100GE(100Gbit/s以太网)技术标准和接口带动的100Gbit/s高速传输技术已经得到了业界的广泛关注,成为高速领域新的热点。

   在标准领域,ITU-T,IEEE和OIF分别在100G OTU3,100GE和100G DWDM 3个领域积极推进相关技术标准的制定工作,预计在2010年底,3个组织的主要技术标准都将完成制定。在设备研发及应用领域,领先的设备厂商都启动了100Gbit/s WDM传输技术的研究工作,部分厂商发布了样机并与一些运营商合作(集中在欧洲和北美)进行了多次100Gbit/s传输的演示。因此,100Gbit/s传输技术的发展是迅猛的,业界也出现了一种论点,即40Gbit/s只是过渡技术,100Gbit/s才是下一代高速网络的标准速率,网络速率的提高可以跨越40Gbit/s,从10Gbit/s直接达到100Gbit/s。

   支持上述观点的一个佐证就是Ethernet的发展路线,毫无疑问未来WDM传输系统的主要业务就是各种速率Ethernet接口的互联互通。从10M Ethernet到100GE,IEEE一直以10倍为单位提高这Ethernet的速率,10倍整数才是Ethernet的主流,40Gbit/s只是作为10Gbit/s与100Gbit/s之间过渡技术存在。

   根据对路由器40Gbit/s接口应用需求,WDM传输的技术特点,目前100Gbit/s设备发展现状以及成本因素的分析,笔者的观点是:由于100Gbit/s的迅猛发展,40Gbit/s WDM传输的市场窗口将会受到一定影响,但是无法跨越,未来4~5年内高速网络建设依旧以40Gbit/s为主,以后才会逐渐向100Gbit/s演进。理由如下:

   (1)从技术角度:目前100Gbit/s传输技术尚处于实验室阶段,其成熟程度仅仅相当于2005年前后的40Gbit/s传输技术;如果没有100Gbit/s传输的支持,100GE接口即使出现,也只能用于同机房设备的互通,无法应用于骨干网络。

   (2)从产业链角度:100Gbit/s传输上下游产业链尚未形成,存在诸如核心芯片、测试仪表等诸多短板,没有产业链的支撑很难形成成熟的100Gbit/s传输市场。

   (3)从预计市场规模角度:越高速率的传输技术,可预期的应用场景越有限,100GE业务的传输手段相对丰富,特别是未来WDM传输技术与OTN调度技术相结合,40Gbit/s甚至10Gbit/s线路速率都可以有效支持100GE业务接口,因此100Gbit/s传输的整体市场规模存在不确定因素。

   (4)从性价比角度:40Gbit/s传输已经实现了一定的规模应用,将为其带来明显的成本优势,在未来若干年内,100Gbit/s传输的性价比尚难以超越40Gbit/s传输。

   3 高速技术展望

   就在笔者撰写本文的时候,听闻喜讯:被称为“光纤之父”的英籍华人科学家高锟(Charles C. Kao)博士被宣布授予2009年诺贝尔物理学奖,高锟成为三位获奖者之一并获得二分之一的奖金。这对于光通信行业内的每个人来说,都是一个振奋人心的好消息,光纤通信在信息化过程中的贡献是有目共睹的,这种成就完全有资格写入人类发展史。诺贝尔奖只是对历史的回顾和肯定,作者也希望高博士的获奖能够成为一个象征,光通信技术和产业都能在未来得到更广大的发展。

   无论在哪个阶段,高速大容量WDM传输都是光通信技术中最具代表性的一种,从2.5Gbit/s到10Gbit/s再到现在的40Gbit/s,单波速率已经提高了16倍;从最初的8×2.5Gbit/s到现在的80×40Gbit/s,系统容量提高了160倍;100Gbit/s WDM传输技术也已经走向前台,成为下一代高速技术的代表。

   随着业务需求和相关技术的发展,我们有足够的理由相信,高速光传输技术还有广阔的发展空间:一方面要继续提高单波速率和系统容量;另一方面需要进一步降低成本,提高性价比,扩展适用范围。总之,高速光传输技术存在和发展的惟一价值就是更好地满足人们的信息通信需求。


上一页 1 2 下一页

关键词:光传输

评论


相关推荐

技术专区

关闭