新闻中心

EEPW首页>测试测量>设计应用> DOLPHIN智能音波管道泄漏监测系统

DOLPHIN智能音波管道泄漏监测系统

作者: 时间:2013-01-10 来源:网络 收藏


3、音波智能核心技术

音波需要解决的核心难点是既需要灵敏的检测到由于微小泄漏引起的微弱音波信号,同时也需要区分泄漏引起的音波和管道日常运行中的背景噪声以及操作干扰,避免干扰信号引起的误报警。因此,监测问题可以归结为模式识别问题:如何有效的建立泄漏音波信号及各种干扰信号的模型?如何从实时识别出泄漏音波?

为了提高系统灵敏度,降低由于干扰噪声引起的误报,音波智能管道泄漏采用先进的传感器技术及前端处理技术以获取高质量的音波信号、领先的信号处理技术抑制背景噪声和操作干扰、先进的人工智能技术和模式识别技术以准确的识别微小泄漏音波同时拒绝各种干扰音波信号。音波管道泄漏监测系统采用基于HMM(Hidden Markov Model)模型的识别器实时监测管道运行状况。

传感器及前端处理模块

主要作用是实时将管道中的音波信号转换为电讯号,并传输到DOLPHIN系统信号采集处理终端。在微小泄漏孔径的情况下,DOLPHIN系统信号采集处理终端采用定制的传感器,有效的解决了微弱信号的捕捉、放大和噪声抑制问题。

音波信号处理:

管道背景噪声影响泄漏音波信号质量。在严重的情况下,管道泄漏音波信号将完全被噪声淹没。DOLPHIN泄漏监测系统采用先进的背景噪声功率谱估计算法,有效地估计管道运行过程中的平稳和非平稳背景噪声,然后利用维纳滤波器抑制背景噪声。

管道分输等操作干扰噪声特点接近泄漏音波信号,DOLPHIN系统采用主传感器获取主信号,同时采用多个传感器采集参考干扰信号,利用自适应滤波器滤除干扰噪声。

基于HMM模型的实时识别器及快速自适应训练

DOLPHIN音波智能管道泄漏监测系统选择不同频带的低频音波能量作为特征向量。波形特征向量经过能量压缩、信息压缩之后,作为实时识别器的输入。

DOLPHIN音波管道泄漏监测系统采用了基于HMM(Hidden Markov Model)模型的识别器实时处理并甄别管道的运行状态。采用HMM模型来描述泄漏音波及各种干扰信号模型,解决了HMM模型建立、模型训练、实时识别以及在嵌入式系统上的识别器优化等一系列问题,从而有效地识别出泄漏音波信号及干扰信号。

实际管道的运行状况千差万别,压力、温度、流体特性以及背景噪声都各不相同,准确快速地适应调整识别模型将进一步提高识别系统的性能。DOLPHIN音波管道泄漏监测系统采用先进的快速适应性训练技术对原始模型进行训练。经过现场快速适应训练之后,实时识别器的HMM模型能够更好的适应管道的现场运行状况,从而进一步提高识别精度。

开放式、模块化软硬件架构

与一些采用专用软硬件管道泄漏监测系统相比,DOLPHIN音波管道泄漏监测系统采用贝加莱开放式的软硬件系统架构。同时,软硬件系统都采用模块化的结构,便于系统维护和升级,也有利于DOLPHIN音波管道泄漏监测系统性能的进一步提升。

4、DOLPHIN管道泄漏监测系统

目前,DOLPHIN管道泄漏监测系统已在延长集团延炼-西安成品油管道、中海油中捷石化-黄骅港原油成品油管道、中海油海底原油/天然气管道等多个项目得到成功应用。本文以延炼-西安成品油管道为例,介绍管道泄漏监测系统在长输管道的应用。

延炼-西安成品油管道起点为延安市黄陵县延炼惠家河油库,终点为西安市临潼区斜口镇,管道全长200.9km。整体走势为北南走向,起点高程为789m,终点高程为443m,全线最低点高程为360m,最高点高程为1590m。设计年输油能力500万吨,设计最大输量820m3/h,输送油品主要包括:93#汽油、90#汽油、5#柴油、0#柴油等。采用顺序输送,管线首站出站设计压力16MPa,末站进站设计压力10MPa。

newmaker.com
图2 延炼-西安成品油管道音波泄漏监测系统框图

延炼-西安成品油管道智能音波泄漏监测系统安装6个数据采集处理终端(延炼首站、3#截断阀室、5#截断阀室、铜川清管站、7#截断阀室、西安输油末站)、1套泄漏监测定位服务器(西安输油末站的中心控制室)和1套泄漏监控终端(西安输油末站的中心控制室)。采集终端和服务器之间通过沿管道铺设的光纤通讯。

在西安输油末站站控室安装1台服务器,运行DOLPHIN智能音波测漏系统服务程序。同样在站控室安装1台监控终端,运行远程OPC程序和人机界面程序。监控终端和服务器之间通过局域网通讯。


评论


相关推荐

技术专区

关闭