新闻中心

EEPW首页>测试测量>设计应用> MDO混合域示波器应对物联网设计挑战

MDO混合域示波器应对物联网设计挑战

作者: 时间:2012-09-15 来源:网络 收藏

newmaker.com
图五:13.56MHz RFID射频信号的时域波形、调制域波形与频谱显示

使用ASK调制方式的RFID系统是通过副载波传输数据信息的。在上图的频谱部分,我们可以清楚地看到射频信号的载波是13.56MHz,副载波信号为±800KHz左右。符合相关规定的要求。如果需要测量射频信号的射频参数,如信道功率、邻道功率比或占用带宽等,通过选择4000的自动测量功能,可以在屏幕中直接显示这些测量结果。

如果设计人员希望了解RFID系统传输的数据情况,4000同样可以提供强有力的支持。4000可以提供RF信号的IQ数据。将这些数据导入泰克的RSAVu软件后,可以完成RFID数据的解码、射频指标计算等工作。如下图所示,使用RSAVu软件读取MDO4000提供的。TIQ数据,软件可以计算得出RF信号的幅度时域波形,计算得出EVM、调制深度、调制系数、频率偏差、码速率等参数。并可以将这些RF信号代表的数据解码显示出来。简化了设计人员的调试难度。

newmaker.com
图六:RSAVu自动测试和解码功能

MDO的系统级调试和分析功能

RFID读写器是一个包含了基带微控制器、RF发射和接收模块以及电源和控制总线的复杂的射频嵌入式系统。基带控制信号和系统内部寄存器的状态直接影响系统的工作状态。以我们测试的读写器为例,NXP CLRC632读写控制芯片包含了 压控振荡器、锁相电路、编码、解码、混频和发射/接收功能,芯片的工作受到单片机芯片STC 90c58RD+的控制。

测试系统控制信号与TX和RX信号的时序关系

newmaker.com
图七:Rx信号与射频信号的时域关系

NXP CLPC632射频芯片的相关管脚可以测量得到射频发射的控制信号,如上图所示的CH2蓝色波形,我们可以将这些控制信号与RF信号的时域波形,以及RF信号的AvsT波形同时测量,这样我们就可以简便地观察到各种控制指令对射频发射的影响。

newmaker.com
图八:通过SPI总线捕获寄存器状态数据

单片机芯片与读写控制芯片之间通过SPI总线通信。读写控制芯片的实际工作功能,通过更改内部寄存器的数值加以管理。如:地址14的寄存器为codercONtrol寄存器,控制编码时钟和模式。当该寄存器的第三位至第五位的值为000时,则编码速率为848KB,当数值为011时,则为一个典型的ISO1443A编码标准,码速率为106KB,数值为100时为ISO1443 TYPE B的编码速率。这调试实战中,如果我们发现频谱副载波信号的频率与我们设计的传输码速率不一致时,我们可以通过捕获相应地址的SPI总线数据,查看相应的寄存器的数值,确定出现此类问题的原因。Codercontrol寄存器的0-2位,控制的是传输数据的编码形式。如果在设计调试中发现有数据通信不能建立的问题,可以检查这三位的数值,核查实际的编码形式是否正确。"000"代表ISO14443-B的NRZ非归零编码,"001"表示ISO14443A的Miller编码,而"110"和"111"则表示ISO15693标准对应的编码形式。

总结

MDO4000混合信号示波器独有的时间相关的跨越分析功能,为以RFID为代表的设备的研制和调试提供了有力的工具。使用MDO4000不但能够轻松测量信号的模拟波形、频谱状况和各种频域参数,更可以通过AvsT、FvsT和ΦvsT这些调制域轨迹,简便地验证产品是否符合国际和行业标准的规定。更重要的是,由于将模拟信号、数字信号和总线信号,与射频信号在时间上关联起来,我们既可以通过这些信号时序关系,验证系统实际工作的过程,也可以通过对总线信号、寄存器数据的分析,查找除产生故障的原因。目前MDO4000是市场中唯一一种能够提供此类功能的测试仪器。我们希望MDO4000能够加速产品的设计,为整个产业的发展贡献力量。

物联网相关文章:物联网是什么



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭