新闻中心

EEPW首页>测试测量>设计应用> 基于数字示波器的高精度抖动测试方法

基于数字示波器的高精度抖动测试方法

作者: 时间:2012-03-21 来源:网络 收藏


测试精度

任何设计人员选择示波器进行参数测量前都会通过产品的指标了解其测试精度,以保证足够的容许误差和测量余量。也不例外,例如泰克TDS6804B 示波器指明了精度,规定了抖动测量能力的典型值。精度受到许多因素的影响,主要包括示波器的定时稳定度、取样噪声、仪器幅度本底噪声和内插误差。


内插误差是由在实际电压样点之间进行线性内插导致的误差。在测量100ps上升时间的信号、示波器以20GSa/s采样率在50%电压门限上进行检测时,这一误差要小于0.3ps RMS。在许多情况下这一误差可以使用示波器中的SIN(X)/X正弦内插及其它方法改善,例如充分利用示波器的垂直动态范围,使输入信号幅度达到示波器满刻度。在大多数情况下,这一原因导致的误差会远小于其它误差源,并且通过使用如Sin(X)/X或Sinc内插,可以进一步减小这一误差。


示波器采样系统中定时元件的稳定性直接影响着定时测量精度。如果时基有误差,那么基于该时基进行的测量会具有同等或更大的误差。示波器中的时基稳定性包括参考时钟、倍频器、计数器等相关电路的稳定性。当通过实时采集模式进行时,由于示波器工作在单次触发模式,连续实时采集所有信号,所以它不受仪器多次触发带来的触发抖动影响。


另外两个误差源分别是ADC孔径不确定性和量化误差。这些误差可以表现为幅度噪声和定时噪声,具体取决于取样数据使用的方式。很难区分该误差的实际来源,因为模数转换的时间不同。由于采样头要求有限的时间选通样点(ADC孔径不确定性),任何取样都可能同时包括时间误差和幅度误差。由于ADC分辨率和相关量化误差的综合结果,取样时间和电压样点位置会表现出有限的误差。


最后,幅度噪声是定时测量精度中另一个因素。在快速边沿中,幅度噪声的影响最小,但在边沿速率变慢时,幅度噪声会占据主导地位。这是因为在边沿速率相对于系统带宽变慢时,幅度噪声会改变跨越门限的定时,这样幅度噪声就会变成定时测量误差。


增量时间精度(DTA)


怎样才能确保结果是精确的呢?或者说如何评估示波器的时间测试精度呢?由于抖动测试是时间信息的提取,泰克最早使用“增量时间精度”(Delta Time Accuracy)指明时间测量的精度。这一指标在中至关重要,因为它包括前面提到的影响时间精度的多种效应导致的总体影响。


一般增量时间精度(DTA)指标为:

DTA = ±0.3 × SI + 3.5×ppm MI方程1

其中SI是取样时间间隔,单位为秒,例如20GS/s采样率下,样点时间间隔为25ps。MI是测量时间间隔,单位为秒。±0.3是示波器采集系统常系数。

采用上面的公式来定义DTA是因为几个不同因素对精度的影响不同。首先是时基精度,一个10.0MHz参考源的校准精度以及校准后是否漂移,都会影响长时间测量结果。例如,在测量一个时间为1.0ms脉冲时,低于皮秒级的影响(如内插误差)相对于0.4ppm校准偏差引起的误差非常小,因为 1.0ms×0.4ppm,得到误差达到400ps。

通过使用TDS6804B(8GHz带宽,20GS/s采样率)进行两个时钟测量实例(一个短时钟周期、一个长时钟周期),可以查看主要误差的来源。当测试1.0GHz高速时钟时,使用TDS6804B以20GS/s实时采样率进行采样。根据DTA公式可以得到下面结果:
DTA=±0.3x50 ps+3.5ppm×1ns = ±15ps方程2

这是在单次采集或实时采集中进行的任何一项时间测量的峰峰值测量误差。在大量的样本容量(大约1,000次测量值)中,误差的标准偏差一般为 0.06×SI+3.5 ppm×MI。在本例中,其约等于3.0 ps RMS(0.06×50ps+3.5ppm×1ns)。


当在测量100kHz时钟时,根据DTA公式可以得到下面结果:p>
DTA=±0.3×50 ps+3.5 ppm×10us= ±50 ps方程3

测量误差可能会高达50ps峰值,RMS结果将受到类似的影响,因为时基误差是确定的。在这种情况下,我们看到在测量时间更长时,常数0.3决定的短期效应变得不如时基校准和稳定性对长时间结果的影响明显。在泰克示波器中,采用一种独有硬件技术保证更高的时间测试精度,称为实时内差模式,它作用在示波器采集前端,通过sinx/x内差算法在ADC的样点间插入样点,并且可以调节插入的样点数目,最小样点间隔为500fs。


分辨率


测量分辨率定义了可靠地检测到测量变化的能力。不要把分辨率与测量精度、甚至测量可重复性混为一谈。在定时测量中,分辨率是辨别信号定时中微小变化的能力,而不管变化是有目的的,还是由噪声引起的。


在实时示波器中,定时分辨率受到取样速率、内插精度和基于软件的数学运算库的限制。在使用40GS/s的取样速率和SIN(X)/X内插时,可能会实现几十飞秒的分辨率。由于上面的参考实例中的分辨率基于数学运算库,因此实际分辨能力低于一飞秒(0.0001 ps)。


分辨率是指测量定时中微小变化的能力。但这可能并不一定反映真实情况。当测量变化小于仪器内部固有噪声时会发生什么情况呢?在测量幅度小的噪声或抖动时,必须考虑示波器系统的抖动本底噪声。只知道系统分辨率对理解精度或示波器整体能力的实际极限并没有什么帮助。


抖动本底噪声(JNF)


抖动本底噪声(Jitter Noise Floor)是抖动测量时仪器固有的噪声。在示波器中JNF决定着可以检测到的抖动底限。客观的讲,幅度小于JNF的抖动示波器是观察不到的。尽管某些厂商可能声称可以分辨小于JNF的抖动幅度,但这种能力几乎没有什么参数价值。


检验JNF的方法之一是测量没有噪声的、完美定时的信号。尽管完美信号非常少见,但适当良好的信号源是存在的,可以用来表征抖动本底噪声。一般用于这一测试的常用仪器是具有低相位噪声的RF发生器。


泰克示波器使用时间间隔误差(TIE)来测量JNF。TIE是最优方法,因为它测试出信号中的任何相位误差,而不管误差具有高频特点还是低频特点,是单次事件误差还是累积误差。此外,在实时示波器中,TIE方法可以将计算得到的完美时钟作为参考时钟源。


内存长度对抖动测试的影响


影响JNF的另一个因素是在测试结果中包括的抖动噪声的频段。所有抖动都具有不同的频率分量,其通常从DC直流到高频部分。因为抖动测试的频率范围是由示波器的高速采集内存的大小决定的,它是单次采集时间窗口的倒数(单次采集时间窗口=高速内存长度×采样间隔时间)。例如,泰克TDS6154C在 40GSa/s时实现了64 M的高速采集内存,即一次触发能够以25ps的时间间隔连续采集64M个样点,得到单次采集时间为1.6ms,因此它能够测量最低到625Hz的抖动。在示波器中测量JNF时,还应指明该指标包括的频率范围。泰克示波器一般标称的是在最长记录长度和高采样率下的JNF。

当使用示波器进行抖动测试时,高速采集内存长度是示波器进行抖动测试的关键指标。在示波器的前端放大器和采集电路后面跟随着高速存储电路,它存储ADC转换的采样点。高速内存长度不仅决定了一次抖动测试中样本数的多少,还决定了示波器能够测试的抖动频率范围。表1显示了20GSa/s高采样率下,不同内存长度分析抖动频率范围的大小。

表1:在20GSa/s高采样率下不同内存长度分析抖动频率范围的大小。


传统示波器设计时采用将高速采集前端(多达80颗ADC)和高速内存在物理上用一颗SoC芯片实现,由于有太多功能在一个芯片内部,导致片内高速内存容量的限制(在40GS/s下一般小于2M),只能测量直到20KHz以上的抖动,并且当需要测试低频抖动时,无法对内存扩展升级。对于大多数应用,测试和分析625Hz到20KHz范围内的抖动信息非常重要。为了弥补这种设计结构的缺陷,这类示波器会采用外部的低速存储器弥补片内高速内存,但外部存储器不能在高采样率下工作,一般只能提供2GS/s,无法提供有意义的抖动测试结果。

TDS6154C采用硅锗(SiGe)半导体集成采集前端,并使用专用的高速存储器。它同时支持最大的带宽,采样率和存储长度。例如,当使用40GS/s 实时高速采集时,512K内存一次采集数据量仅为12.5us,只能测试频率范围为80K以上的抖动。在各种串行总线和时钟抖动测试中都很难满足测试要求。


因为内存长度对JNF和实际抖动测试都有至关重要的影响,为了提供和其它示波器厂商的该指标有可比性,泰克还提供了其它情况下的JNF指标。即将 TDS6154C示波器的存储长度限制为2M进行JNF测试,以便和其它有内存限制的示波器进行比较。在这一频率范围内,TDS6154C的典型JNF是 420fs,该指标比其它类型示波器小一倍。


评论


相关推荐

技术专区

关闭