新闻中心

EEPW首页>测试测量>设计应用> 控制双机器人系统,向中风患者提供上肢治疗

控制双机器人系统,向中风患者提供上肢治疗

作者: 时间:2010-03-17 来源:网络 收藏

  控制系统

  iPAM必须主动地提供动力以辅助人类手臂运动。因此,有效地协调性工作是至关重要的,因为肢体错位或过度用力可能会导致肢体的疼痛或受伤。为了做到这一点,我们开发了新型控制方案,该方案围绕对人类关节的自由度进行操作,而不是笛卡尔末端。我们将人类手臂简化为六个DOF模型,对应肩膀上的五个DOF(两个转换和三个旋转)和肘部一个DOF。由于每个机器人可以控制三个DOF,因此两个机器人约束上肢的六个DOF是可能的。

  人类关节角度不是由iPAM系统直接测量的,因此是采用人类手臂模型的直接逆运动学公式,根据手臂的已知运动数据和机器人相对依附点的位置进行估计的。该公式无法应对来自软组织接口(皮肤、肌肉和矫形填充)的固有测量误差和肩关节运动奇点。

  然而,我们使用雅可比(Jacobian)转置方法开发了一个新的迭代公式,其基于手臂前向运动学,更易于估计。重要的是,该方法考虑到了测量误差和运动学奇点。为了提供准确的手臂位置估计,在控制循环的每次迭代中,以500Hz频率对前向运动学的50次迭代进行处理。这对实时控制器提出了大量计算能力的要求,以及确定的实时性要求,使其拥有高确定性。

  通过将每个机器人测量得到的动力转化为上肢坐标系统,我们可以实现准入控制方案,在该方案中可以定位到上肢的特定关节进行援助。准入控制方案的功能是测量每个人DOF的转矩和动力,根据治疗师设置的刚度和阻尼参数来调节预期的关节位置。

  使用较高的援助程度(高度性刚性设置),机器人谨慎遵守治疗师的规定动作。这比较适合较少主动运动的病人。降低援助的程度(较低的刚性设置)允许对规定动作有较大偏差,这适合于那些在较大范围主动运动的病人使用或者当病人的活动性提高时使用。模型中每个关节的援助可以独立改变,同时保留运动的协调模式。

  实现

  我们使用实时模块和NI公司的接口卡实现iPAM实时控制器,执行控制器的信号I/O功能。输入 传感器 包括两个六轴动力变频器,六个非接触式旋转传感器,三个测量肩膀位置的电位器,和几个用于安全开关的数字输入。 模拟 输出信号控制12对压力调节阀,其在每个机器人关节处驱动低摩擦性气缸。该控制器完全基于状态,使代码具有逻辑性、可扩展性和易于审核。实时 操作系统 允许控制器确定性执行,有助于确保整个系统的可靠性和安全性。

  物理治疗师使用客户端电脑,与用户界面一起启动,向病人提供指令、运动线索和与iPAM系统交互性能反馈信息。客户端使用TCP协议通过以太网与实时控制器异步通信。用户界面的主要组成部分是三维空间显示。在软件平台上使用基于OpenGL三维图片功能进行控制,它允许具体任务信息实时性地传递给病人。

  试验性临床试验

  我们分两次小规模试验性临床研究实现了iPAM系统,通过招募中风后导致手臂残障的26个病人,来参加长达20个小时的机器人治疗会议。每次会议包括近40分钟的运动机器人使用时间。在研究过程中,在使用运动机器人超过300个小时期间,iPAM系统辅助了超过13,000个运动达到的动作。病人接受使用该系统的比例很高,一些病人表现出手臂运动性能的提高。在临床试验期间,病人没有表现出不良反应的情况。在两次试验的整个过程期间,实时控制器保持稳定。环境模块化特性使其对于原型设计和开发我们的系统来说是理想的选择。

  根据新型和新兴技术应用基金方案(NEATE027),这项工作得到了英国国家健康服务的支持。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭