新闻中心

EEPW首页>手机与无线通信>设计应用> TD-SCDMA移动通信系统的增强和演进(上)

TD-SCDMA移动通信系统的增强和演进(上)

——
作者:彭木根 李勇 王文博 时间:2007-04-24 来源:通信世界网 收藏

时分-同步码分多址()是由中国提出的时分双工(TDD)模式的第3代技术标准,是3GPP标准的一个重要组成部分。采用了很多先进的通信技术,如上行同步码分多址、智能天线、联合检测、软件电、接力切换和动态信道分配技术等[1]。TDD模式不需要对称频带,
源在上下行间可以灵活分配,更适合于数据传输这样的非对称业务,在无线频带资源越来越短缺的今天,逐渐成为B3G/4G系统研究的焦点。在中国,频分双工(FDD),包括宽带码分多址(WCDMA)和CDMA2000模式,总共分得90 MHz频带带宽,而TDD模式分得了155 MHz的带宽,反映出中国政府对的大力支持,并预示了其良好的发展前景。

与WCDMA和CDMA2000系统相比,TD-SCDMA有其技术上的优势,但缺乏商用经验。而在未来的演进过程中,TD-SCDMA与 WCDMA具有很好的兼容性,这为未来在多系统之间进行切换和漫游打下了良好的基础。同时TD-SCDMA与WCDMA使用的都是3GPP提出的核心网版本,这种天然的结合使两种系统在未来的发展道路上可以相互扶持与互补。从商业和投资的角度来看,核心网只占总系统投资的30%左右,所以,在未来演进过程中,TD-SCDMA与WCDMA的兼容依然是研究的重点。虽然与CDMA2000系统的体系结构有较大的差异,但为了全球通信服务的普遍性和用户的方便性,与CDMA2000系统的兼容也成为商业和技术研究关注的焦点。

TD-SCDMA在热点覆盖地区峰值速率可达2 Mb/s,在中速移动环境下可达384 kb/s,在高速移动环境下可达144 kb/s。然而随着业务的高速增长,TD-SCDMA的2 Mb/s的峰值速率将无法满足需求。同时,根据国际电信联盟(ITU)的估计,新的B3G蜂窝系统可提供的100 Mb/s~1 Gb/s的峰值速率预计将在2015年实现。与CDMA2000采用3载波的技术相似,TD-SCDMA也有单载波和多载波系统之分,采用多载波可以实现更高的传输速率,但也会加大系统的复杂度。另一方面,技术和无线宽带接入技术的融合也进行得如火如荼。TD-SCDMA与无线局域网(WLAN) 的融合可以在室内环境或热点地区提供54 Mb/s的峰值速率,有效地弥补了TD-SCDMA热点地区的覆盖。随着以IEEE 802.16系列标准为基础的无线城域网技术(一般称为WiMAX)的发展,TD-SCDMA与WiMAX的融合也已进入正式规划日程当中,并成为现今技术讨论的焦点。WiMAX可以在20 MHz的带宽下提供75 Mb/s的峰值速率,为TD-SCDMA系统起到了强有力的补充效果,尤其是IEEE 802.16e的提出,使融合系统在移动速度支持上得到很大改善。

3GPP从2004年11月开始着手其长期演进计划(LTE),LTE的目标是增大蜂窝通信系统的覆盖范围和容量,提高吞吐量,降低成本并减少服务时延,同时改善服务质量,为用户提供新的体验和感受。LTE的发展将在现有3G规划频带上,以成熟的B3G新技术为基础,向B3G/4G系统平滑过渡,并保持通信系统在未来的可持续发展性。

中国政府出资发展TDD未来演进系统,并致力于B3G/4G TDD系统中空中接口和新构架等关键技术的研究。其目标是对3G的全网覆盖,并提供100 Mb/s~1 Gb/s的峰值速率。通过采用多输入多输出(MIMO)多天线技术和正交频分复用(OFDM)多载波技术,第一个发布版本在20 MHz的带宽内在下行传输中可以实现100 Mb/s的速率,在上行可达50 Mb/s的传输速率,同时,频带利用率可达2 bps/Hz~5 bps/Hz。由于TDD系统的众多优点,TD-SCDMA演进到LTE/B3G TDD将势在必行[2]。

本文论述了TDD系统由TD-SCDMA到TDD未来演进系统的演进过程。由于TDD未来演进系统到2015年才能实现商用,并且TD- SCDMA到TDD未来演进系统数据速率的跨度很大,所以在TD-SCDMA到TDD未来演进系统过程中必将存在一些过渡阶段。TD-SCDMA的演进从引入新技术角度和峰值速率角度大体可分为4个阶段,而每个阶段又有着不同的技术层次:TD-SCDMA单载波和多载波阶段、HSxPA TDD的单载波和多载波以及与无线宽带技术融合阶段、LTE TDD单载波和多载波阶段、TDD未来演进阶段(TDD B3G/4G)。

1 TD-SCDMA到B3GTDD未来演进

TD-SCDMA的演进目标是提供更高速率的服务,降低时延和成本,改善覆盖范围和容量。而为了达到这样的目的,将引入许多先进的技术,如自适应调制编码(AMC)、混合自动请求重传(HARQ)、OFDM、MIMO和多载波技术等,其中许多革命性技术在演进过程中起着关键的作用,是峰值速率不断提高的根本动力。

在TD-SCDMA演进的过程中,随着用户业务需求的不断扩大,单载频系统中的部分小区(例如繁华地带)可能会出现业务量过大而无法承受的情况,因此必须考虑使用新的技术方案来对系统进行扩容。

系统扩容可以通过小区分裂或者增加载频等方式来实现。相对于前者来说,后者对规划、设计等影响较小,且成本更低。因此,引入多载波技术可以有效解决系统容量不足的问题。通过引入HSxPA(包括HSDPA和HSUPA,还有增强技术HSPA+)能够进一步地提高上下行链路数据业务的吞吐量,HSxPA时代最显著的技术是AMC和HARQ。

MIMO和OFDM技术是在B3G/4G系统中最为革命性的技术,是LTE TDD时代显著的标志。OFDM技术可以有效地改善频谱效率,随着计算机的发展和现代信号处理技术的进步,快速傅立叶变换/快速傅立叶逆变换 (FFT/IFFT)的实现使OFDM技术在系统中实现的复杂程度大大降低。随着MIMO多天线技术的发展,在通信链路中引入了空域的概念,与时域、频域和码域一起获得分集或复用增益,使通信系统的容量成倍增加,从而从本质上提高了传输速率。但MIMO技术更适于平坦信道,而在宽带无线通信中大多是频率选择性信道,这时,OFDM与MIMO的结合,恰好利用了OFDM的循环前缀(CP)技术,克服多径影响,把频率选择性信道改造为平坦信道,再应用MIMO 技术,传输增益显著[3]。

如上所述,从TD-SCDMA到TDD未来演进时代的演进过程如图1所示,演进过程大体分为4个阶段,每个阶段又分不同层次:分别是单载波/多载波TD-SCDMA系统、单载波/多载波HSxPA系统、 LTE系统和基于TD-SCDMA的第4代移动通信系统(即TDD B3G/4G)。

从TD-SCDMA到TDD未来演进时代的演进过程

1.1TD-SCDMA第1阶段

第一阶段主要包括单载波和多载波的TD-SCDMA,采用的关键技术包括CDMA、上行同步、智能天线、联合检测、动态信道分配等,核心网基于3GPP标准的R4版本,单载波极限速率为2 Mb/s,而对于N 载波技术,理论极限速率可以达到N



评论


相关推荐

技术专区

关闭