新闻中心

EEPW首页>模拟技术>设计应用> 驱动陶瓷扬声器的放大器设计考量

驱动陶瓷扬声器的放大器设计考量

作者: 时间:2008-06-23 来源:中电网 收藏

  因此当输出信号较小时,G类的效率要比AB类高,这源于更低的电压轨。因为有较高的电压轨,G类仍能处理峰值瞬变信号。

本文引用地址://m.amcfsurvey.com/article/84636.htm

  图中所示的MAX9788使用了一个片上电荷泵来产生与VDD相反的负电压。这个负电压轨只在输出信号要求更高电压轨时才加到输出电路上。与采用升压转换器方法的传统AB类放大器相比,该器件可以更高效地驱动

  扬声器制造商经常推荐与串接的固定电阻(RL),如图4所示。这个电阻在信号包含大量高频分量时可以限制放大器的输出电流。

  在某些应用中,如果限制送到扬声器的音频频率响应的带宽以确保扬声器对放大器不会短路,那么可以不用这个固定电阻。目前市场上的电容值在1uF数量级左右。扬声器的阻抗在8kHz时为20W、在16kHz时为10W。未来的陶瓷扬声器可能有更大的电容值,会迫使放大器在相同信号频率下提供更多的电流。

  陶瓷扬声器与电动式扬声器的效率

  传统电动式扬声器的效率很容易计算。在电气上音圈绕组可以建模为一个固定电阻串联一个大电感。

  可以使用扬声器的电阻值并根据欧姆定律计算提供给负载的功率:

  P=I2R或P=VxI

  该功率在扬声器线圈上消耗为热量。

  由于陶瓷扬声器的电容特性,它们在消耗功率时不会产生太多的热量。根据陶瓷元件的耗散系数,这种扬声器消耗所谓的无功功率(blind Power)非常小。因此在消耗无功功率时产生的热量也非常小。

  不能用简单的P=VxI计算无功功率

  无功功率应这样计算:

  P = (πfCV2) × (cosΦ + DF)

  其中:c=扬声器的电容值;v=RMS驱动电压;f=驱动电压的频率;cos j="通过扬声器的电流和扬声器上的电压之间的相位角";Df=扬声器的耗散系数,取决于信号频率和陶瓷扬声器的ESR。

  对于理想的电容来说,电压和电流之间的相位角应该是90度,而陶瓷扬声器主要是电容特性,因此cos j等于0,也即陶瓷扬声器的电容部分没有功耗。但陶瓷材料的非理想特性将导致扬声器上的电压滞后于通过扬声器的电流,它们之间的相位角不完全等于90度。理想的90度相移和实际相移之间的差异就是耗散系数。陶瓷扬声器中的Df可以建模为一个小电阻、ESR和理想电容串联。(不要把串联电阻与放大器和扬声器之间的隔离电阻混淆起来) Df是目标频率下ESR对容抗的比率(参考文献2和3):

  DF = RESR/XC

  举例来说,一个具有1.6uF电容和1W ESR的扬声器在被5Vrms、5kHz信号驱动时的无功功率是:

  P = (π × 5000 × 1.6e-6 × 52) × (0 + 0.05) = 31.4mW 或31.4mW。

 真实功耗

  因此,虽然陶瓷扬声器本身不会象电动式扬声器那样以热方式耗散实际功率,但在驱动放大器输出级以及位于放大器与扬声器之间的外部电阻(RL)上会产生热量(图4)。

  外部电阻越大,放大器就会产生更多的功耗,从而影响低频响应。

  在驱动带10W串联电阻的陶瓷扬声器时,我们可以看到无功功率对总负载功率影响很小。大部分功率消耗在外部电阻上,参见图5所示的放大器功率与频率曲线图。

图5:所需功率与频率的关系。

  更好的低频响应要求更小的外部电阻,但这样会导致放大器的输出级功耗提升。放大器效率表明了有多少功率消耗在放大器的输出级上。放大器的功耗推动了对包括D类和G类放大器在内的更高效解决方案的需求,由于负载由许多串联电阻组成,因此会在负载网络上而不是扬声器上产生一定的功耗。即使效率100%的放大器,串联电阻也会消耗本来是给扬声器的功率。

  在这个简单的例子中,5kHz点提供给负载的总功率是515mW。效率为53%的放大器将消耗457mW的功率。放大器必需的功耗大小决定了器件所能用的封装大小。如果必须用高频正弦波驱动扬声器,那就要求很大的功耗。

  总之,越来越薄的便携式设备推动了小体积陶瓷扬声器的需求。这种扬声器有别于传统的电动式扬声器,因此设计师需要考虑不同的设计要素。陶瓷扬声器的电容特性要求放大器具有高的输出电压驱动和大输出电流能力,这样才能在整个频率范围内保持高电压。

  选用来驱动陶瓷扬声器的放大器必须能够向混合负载同时提供无功功率和真实功率。放大器效率必须足够高才能确保小尺寸和低成本方案。

  因此需要使用有别于传统AB类放大器的放大器拓扑。例如G类和D类放大器等效率更高的解决方案越来越有吸引力,其中G类放大器可以提供最佳的效率。

表1:陶瓷和电动式扬声器的优缺点。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭