FAIRCHILD

SEMICONDUCTOR

74VHCT138A 3-to-8 Decoder/Demultiplexer

General Description

The VHCT138A is an advanced high speed CMOS 3-to-8 DECODER fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

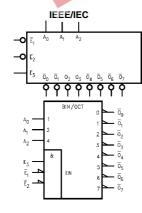
When the device is enabled, 3 Binary Select inputs (A₀, A₁ and A₂) determine which one of the outputs $(\overline{O}_0 - \overline{O}_7)$ will go LOW. When enable input E₃ is held LOW or either \overline{E}_1 or \overline{E}_2 is held HIGH, decoding function is inhibited and all outputs go HIGH. E₃, \overline{E}_1 and \overline{E}_2 inputs are provided to ease cascade connection and for use as an address decoder for memory systems. Protection circuits ensure that 0V to 7V can be applied to the input pins without regard to the sup-

ply voltage and to the output pins with V_{CC} = 0V. These circuits prevent device destruction due to mismatched supply and input/output voltages. This device can be used to interface 3V to 5V systems and two supply systems such as battery backup.

June 1997

Revised April 1999

Features


- High Speed: $t_{PD} = 7.6$ ns (typ) at $V_{CC} = 5V$
- \blacksquare Low power dissipation: I_{CC} = 4 μA (max.) at T_{\text{A}} = 25^{\circ}\text{C}
- Power down protection is provided on all inputs and
- outputs
 Pin and function compatible with 74HCT138

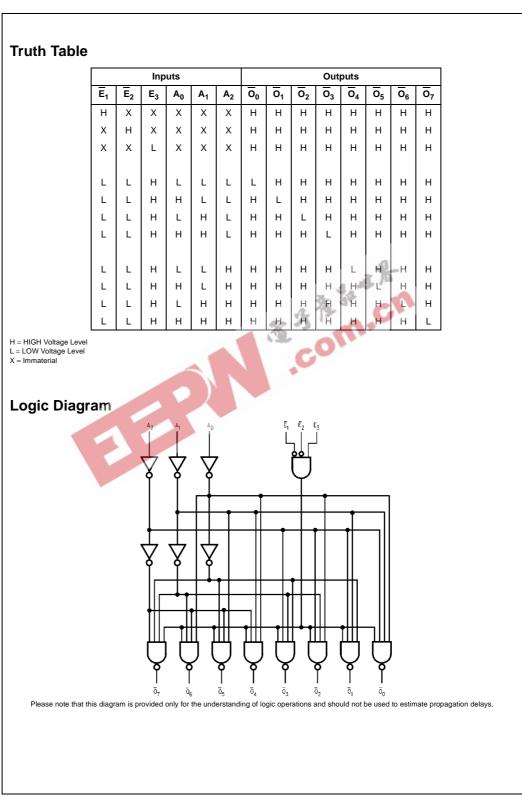
Ordering Code:

Order Number	Package Number	Package Description
74VHCT138AM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74VHCT138ASJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHCT138AMTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHCT138AN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram


	-			
<u>ко</u> —	1	\bigcirc	16	
41 Π Δ2 Π	2 3		15 14	
E1 —	4 5		13 12	- 02 - 03
E3 —	6 7		11 10	- 04 - 05
1D —	8		9	— ō ₆

Pin Descriptions

Pin Names	Description
A ₀ -A ₂	Address Inputs
$\overline{E}_1 - \overline{E}_2$	Enable Inputs
E ₃	Enable Input
$\overline{O}_0 - \overline{O}_7$	Outputs

74VHCT138A

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

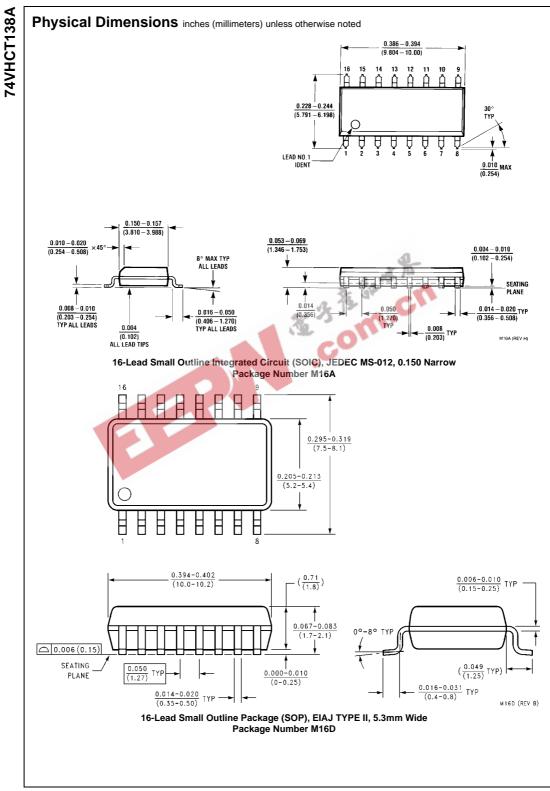
Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (VIN)	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	
(Note 2)	-0.5V to 7.0V
(Note 3)	–0.5V to V _{CC} + 0.5V
Input Diode Current (I _{IK})	–20 mA
Output Diode Current (I _{OK})	
(Note 4)	±20 mA
DC Output Current (I _{OUT})	±25 mA
DC V _{CC} /GND Current (I _{CC})	±75 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Lead Temperature (T_L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Kommended Operating Conditions (Note 5) 4.5V to +5.5V

	Input Voltage (V _{IN})	0V to +5.5V					
	Output Voltage (V _{OUT})						
	(Note 3)	0V to V _{CC}					
	(Note 2)	0V to 5.5V					
	Operating Temperature (T _{OPR})	$-40^\circ C$ to $+85^\circ C$					
	Input Rise and Fall Time (t_r, t_f)						
	$V_{CC}=5.0V\pm0.5V$	0 ~ 20 ns/V					
;	Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifica- tions should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading vari- ables. Fairchild does not recommend operation outside databook specifica- tions.						
	Note 2: V _{CC} = 0V.						
	Note 3: HIGH or LOW state. I _{OUT} absolute maximum observed.	mum rating must be					
	Note 4: Vour < GND Vour> Voc (Outputs Active)						

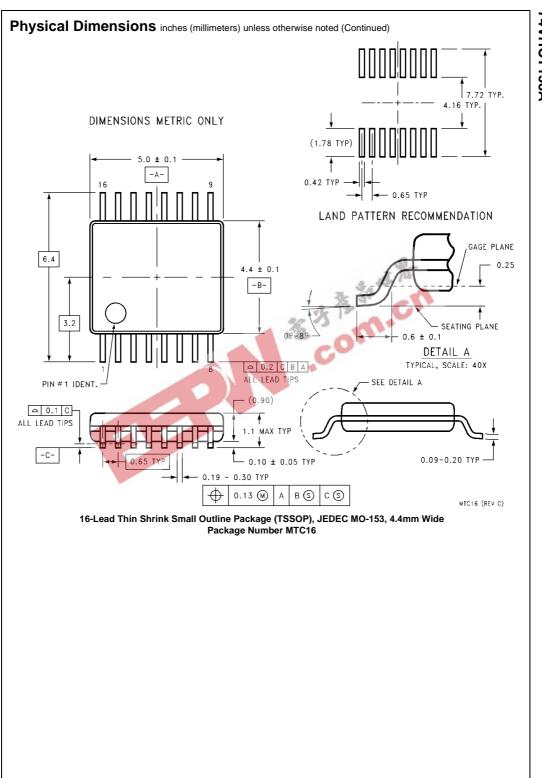
Note 4: V_{OUT} -GND, V_{OUT} - V_{CC} (Outputs Active). Note 5: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

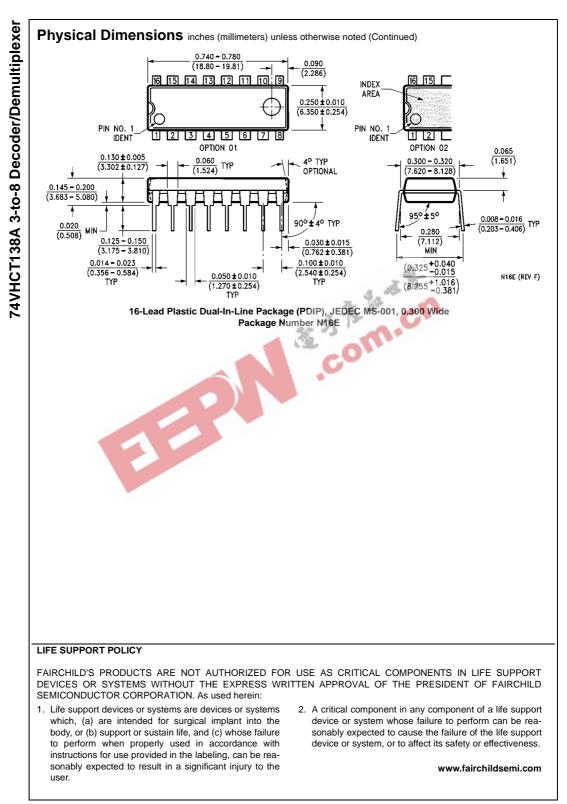

					38	^				
Symbol	Parameter	V _{CC} (V)		$T_A = 25^{\circ}C$	13.7	T _A = -40°C	to +85°C	Units	Conditions	
Cymbol			Min	Тур	Max	Min	Max	onno	••••••	
VIH	HIGH Level Input Voltage	4.5 – 5.5	2.0			2.0		V		
VIL	LOW Level Input Voltage	4.5 - 5.5			0.8		0.8	V		
V _{OH}	HIGH Level	4.5	4.4	4.5		4.4		v	$V_{IN} = V_{IH}$ $I_{OH} = -50 \ \mu A$	
	Output Voltage	4.5	3.94			3.80		Ň	or V_{IL} $I_{OH} = -8 \text{ mA}$	
V _{OL}	LOW Level	4.5		0.0	0.1		0.1	v	$V_{IN} = V_{IH}$ $I_{OL} = 50 \ \mu A$	
	Output Voltage	4.5			0.36		0.44	Ň	or V_{IL} I _{OL} = 8 mA	
I _{IN}	Input Leakage Current	0 - 5.5			±0.1		±1.0	μΑ	V _{IN} = 5.5V or GND	
I _{CC}	Quiescent Supply Current	5.5			4.0		20.0	μΑ	$V_{IN} = V_{CC} \text{ or } GND$	
ICCT	Maximum I _{CC/input}	5.5			1.35		1.50	mA	$V_{in} = 3.4V$ other inputs = V_{CC} or GND	
I _{OFF}	Output Leakage Current	0			0.5		5.0	μΑ	$V_{OUT} = 5.5V$	

AC Electrical Characteristics

Symbol	Parameter	V _{CC} (V)	$T_A = 25^{\circ}C$			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions
Gymbol			Min	Тур	Max	Min	Max	Units	Conditions
t _{PLH}	Propagation Delay	5.0 ± 0.5		7.6	10.4	1.0	12.0		$C_L = 15 \text{ pF}$
t _{PHL}	A_n to \overline{O}_n			8.1	11.4	1.0	13.0	ns	C _L = 50 pF
t _{PLH}	Propagation Delay	5.0 ± 0.5		6.6	9.1	1.0	10.5		$C_L = 15 \text{ pF}$
t _{PHL}	E_3 to \overline{O}_n			7.1	10.1	1.0	11.5	ns	C _L = 50 pF
t _{PLH}	Propagation Delay	5.0 ± 0.5		7.0	9.6	1.0	11.0		$C_L = 15 \text{ pF}$
t _{PHL}	\overline{E}_1 or \overline{E}_2 to \overline{O}_n	-		7.5	10.6	1.0	12.0	ns	$C_L = 50 \text{ pF}$
C _{IN}	Input Capacitance			4	10		10	pF	V _{CC} = Open
C _{PD}	Power Dissipation Capacitance			49				pF	(Note 6)


Note 6: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr.) = $C_{PD} * V_{CC} * f_{IN} + I_{CC}$.

74VHCT138A


www.fairchildsemi.com

4

74VHCT138A

www.fairchildsemi.com

