新闻中心

EEPW首页>嵌入式系统>设计应用> 基于FPGA的LTE系统中转换预编码的设计

基于FPGA的LTE系统中转换预编码的设计

作者: 时间:2011-01-19 来源:网络 收藏

摘 要: 在比较已有FFT实现方法的基础上,提出一种基于FPGA的通用FFT处理器的设计方案。这种FFT实现结构根据不同的输入数据长度动态配置成相应的处理器,可以支持多种基数为2、3、5的FFT计算,硬件资源得到了优化,处理速度及数据精度满足LTE系统中SC-FDMA基带信号的生成要求。

本文引用地址://m.amcfsurvey.com/article/151067.htm

  LTE所选择的上行传输方案是一个新变量:SC-FDMA(单载波-频分多址)相比于传统OFDMA其优点是既有单载波的低峰均功率比(PAPR),又有多载波的可靠性。在上行链路这点特别重要,较低的PAPR可在传输功效方面极大提高移动终端的性能,因此可延长电池使用寿命。代表LTE物理上行共享信道(PUSCH)的基带信号产生过程如图1所示[1]。

  图1中的转换预编码是由一种对称形式DFT完成,其种类及变换长度L=2k1×3k2×5k3(L≤1 200)见表1。

  转换预编码是根据不同的输入长度L动态地执行表1中的一种DFT。其主要特点是包含的DFT种类多、规模庞大,这给硬件设计带来挑战。以前的文献大都以基2或单个混合基FFT[6]为重点进行阐述,而以多种混合基FFT为核心的文章还很难发现。本文提出一种基于FPGA的转换预编码解决方案。

1 算法选择

  Cooley-Tukey算法和Good-Thomas算法是当前流行的FFT算法,文献[2]中已对其原理进行过深入讨论,这里不再赘述。

  (1)Cooley-Tukey算法具有良好的模块性,并且可以实现原位计算,对输入数据以及旋转因子的抽取具有规律性。文献[3]提出的一种基3 FFT算法是Cooley-Tukey算法应用在基3 FFT中的另一种表述。这一算法区别于其他FFT算法的一个重要事实就是因子可以任意选取,通用性强,且所有的运算单元均相同,易于实现。

  (2)Good-Thomas算法只适合因子互质的情况,由于避免了中间级乘旋转因子的运算,因此比Cooley-Tukey算法的运算次数少得多。FFT点数越大,越能体现其在节省资源方面的优点。

  文献[4]提出一种基于Cooley-Tukey算法的传输预编码解决方案。此方案的优点是操作简单、模块规则、利于编程实现;缺点是需要做的级间旋转因子乘法较多(最多达几百),乘法器和存储器等硬件资源开销较大,同时将大大增加系数初始化的工作量。对几种不同长度FFT运算量进行比较见表2。

  表2中的混合算法指Good-Thomas算法与Cooley-Tukey算法相结合。可以看出,Good-Thomas算法与Cooley-Tukey算法相结合与文献[4]相比,减少了级间旋转因子乘法数,可以有效降低运算量,这些运算量的降低对整个系统的实现起着至关重要的作用,而其付出的代价只是复杂度的略微提升。

  综上所述,在实现混合FFT时,选择Good-Thomas算法与Cooley-Tukey算法相结合,且优先选择Good-Thomas算法,其次为Cooley-Tukey算法,系统设计将从Good-Thomas算法出发。


上一页 1 2 3 下一页

关键词:

评论


相关推荐

技术专区

关闭