新闻中心

EEPW首页>手机与无线通信>设计应用> ∑-△模数转换器工作原理及简单分析

∑-△模数转换器工作原理及简单分析

作者: 时间:2013-07-13 来源:网络 收藏

由此可以推理得出L阶调制器的传输函数为:
Y(z)=Z-Lx(Z)+(1-Z-1)LE(Z) (8)
令Hk(Z)=Z-L,Fn(Z)=(1-Z-1)L,则信号传输函数为Hk(Z),是L个延时(全通函数),噪声传输函数为Fn(Z),是L阶整形,即高通函数,将量化噪声推向更高的频域。

本文引用地址://m.amcfsurvey.com/article/153454.htm

f.JPG


图4为信噪比随率和阶数的变化。可以看出采样频率每增加2倍,在L=1时,信噪比提高9 dB,L=2时,信噪比提高15 dB,时,信噪比提高21 dB。率以及阶数越高,;的量化信噪比越好。但是率和调制器的阶数不会一直提高,因为现代工艺还未达到这个水平,硬件实现难,而且调制器的阶数过高会造成系统的不稳定,不利于结果的输出。

3原理
;的输出,信号频谱分布在基带内,而量化噪声则分布在基带之外,所以可以利用数字信号低通滤波器来获得想要的输出。而在一般情况下,为了方便以后对输出信号进行处理,则需要将输出信号的频率将至奈奎斯特频率。数字低通滤波器通常分为两类,有限冲击响应滤波器(FIR)和无限冲击响应滤波器(IIR),在降频变换中,通常采用可以获得精确线性相位的FIR数字滤波器。

h.JPG


滤波以后,进行对数据的重采样,它是通过每输出M个数据抽取1/M个数据完成的,这种方法也叫做输出速率降为的采样抽取,即减采样,最终输出频率降至奈奎斯特频率。通常,减采样后的离散序列的频谱将会出现混迭,为了避免混迭,可在信号减采样前用低通滤波器对信号进行滤波,如图5所示,称该低通滤波器为抽取滤波器。一般的,如果低频信号z(n)的频谱是带限的,即在区间[-π,π]范围内有
g.JPG
则M倍减采样后信号的频谱不会发生混叠。式称为序列减采样不混叠的奈奎斯特条件,即奈奎斯特频率为π/M(数字频率)。
若信号x(n)需保留的最高频率分量为ωm/M(ωmπ),即减采样后的信号在频谱范围[0,ωm]内无混叠,在频率范围[ωm,π]允许存在混叠。则抽取滤波器H(z)的幅度响应可为
i.JPG
M倍减采样滤波系统输出信号的时域表达式可写为
j.JPG
由上式可知在计算M倍减采样滤波系统的输出时,只需计算抽取滤波器每M个输出中的一个样本,所以可以减少系统的计算量。通过抽取滤波器以后,我们就可以得到想要的结果了。

4 结束语
高精度是;最突出的优点,其转换精度一般都在16位以上,在相同精度的模数转换器中∑价格最低,作为测量系统的核心元件,它会提升整个系统的性价比,而且越来越多的应用于数字信号处理系统中。但是这种转换器也是存在着很多制约其发展的因素,最突出的就是,∑以提高采样时间换取精度,应用于对时间要求比较严格的数字信号处理系统比较困难,因此∑-△A/D转换器还有更远的路要走。

模数转换器相关文章:模数转换器工作原理


低通滤波器相关文章:低通滤波器原理


电源滤波器相关文章:电源滤波器原理


数字滤波器相关文章:数字滤波器原理

上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭